Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jan;69(1):439–445. doi: 10.1128/jvi.69.1.439-445.1995

Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus.

G Whittaker 1, I Kemler 1, A Helenius 1
PMCID: PMC188592  PMID: 7983740

Abstract

The matrix (M1) protein of influenza virus is a major structural component, involved in regulation of viral ribonucleoprotein transport into and out of the nucleus. Early in infection, M1 is distributed in the nucleus, whereas later, it is localized predominantly in the cytoplasm. Using immunofluorescence microscopy and the influenza virus mutant ts51, we found that at the nonpermissive temperature M1 was retained in the nucleus, even at late times after infection. In contrast, the viral nucleoprotein (NP), after a temporary retention in the nucleus, was distributed in the cytoplasm. Therefore, mutant M1 supported the release of the viral ribonucleoproteins from the nucleus, but not the formation of infectious virions. The point mutation in the ts51 M1 gene was predicted to encode an additional phosphorylation site. We observed a substantial increase in the incorporation of 32Pi into M1 at the nonpermissive temperature. The critical role of this phosphorylation site was demonstrated by using H89, a protein kinase inhibitor; it inhibited the expression of the mutant phenotype, as judged by M1 distribution in the cell. Immunofluorescence analysis of ts51-infected cells after treatment with H89 showed a wild-type phenotype. In summary, the data indicated that the ts51 M1 protein was hyperphosphorylated at the nonpermissive temperature and that this phosphorylation was responsible for its aberrant nuclear retention.

Full Text

The Full Text of this article is available as a PDF (656.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almond J. W., Felsenreich V. Phosphorylation of the nucleoprotein of an avian influenza virus. J Gen Virol. 1982 Jun;60(Pt 2):295–305. doi: 10.1099/0022-1317-60-2-295. [DOI] [PubMed] [Google Scholar]
  2. Bucher D., Popple S., Baer M., Mikhail A., Gong Y. F., Whitaker C., Paoletti E., Judd A. M protein (M1) of influenza virus: antigenic analysis and intracellular localization with monoclonal antibodies. J Virol. 1989 Sep;63(9):3622–3633. doi: 10.1128/jvi.63.9.3622-3633.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  4. Enami K., Qiao Y., Fukuda R., Enami M. An influenza virus temperature-sensitive mutant defective in the nuclear-cytoplasmic transport of the negative-sense viral RNAs. Virology. 1993 Jun;194(2):822–827. doi: 10.1006/viro.1993.1324. [DOI] [PubMed] [Google Scholar]
  5. Goldfarb D., Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol. 1991 Jul;1(1):20–24. doi: 10.1016/0962-8924(91)90065-h. [DOI] [PubMed] [Google Scholar]
  6. Gregoriades A., Christie T., Markarian K. The membrane (M1) protein of influenza virus occurs in two forms and is a phosphoprotein. J Virol. 1984 Jan;49(1):229–235. doi: 10.1128/jvi.49.1.229-235.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gregoriades A., Guzman G. G., Paoletti E. The phosphorylation of the integral membrane (M1) protein of influenza virus. Virus Res. 1990 Apr;16(1):27–41. doi: 10.1016/0168-1702(90)90041-9. [DOI] [PubMed] [Google Scholar]
  8. Hankins R. W., Nagata K., Kato A., Ishihama A. Mechanism of influenza virus transcription inhibition by matrix (M1) protein. Res Virol. 1990 May-Jun;141(3):305–314. doi: 10.1016/0923-2516(90)90002-z. [DOI] [PubMed] [Google Scholar]
  9. Helenius A. Unpacking the incoming influenza virus. Cell. 1992 May 15;69(4):577–578. doi: 10.1016/0092-8674(92)90219-3. [DOI] [PubMed] [Google Scholar]
  10. Hennekes H., Peter M., Weber K., Nigg E. A. Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol. 1993 Mar;120(6):1293–1304. doi: 10.1083/jcb.120.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inglis S. C., Brown C. M. Differences in the control of virus mRNA splicing during permissive or abortive infection with influenza A (fowl plague) virus. J Gen Virol. 1984 Jan;65(Pt 1):153–164. doi: 10.1099/0022-1317-65-1-153. [DOI] [PubMed] [Google Scholar]
  12. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  13. Kistner O., Müller H., Becht H., Scholtissek C. Phosphopeptide fingerprints of nucleoproteins of various influenza A virus strains grown in different host cells. J Gen Virol. 1985 Mar;66(Pt 3):465–472. doi: 10.1099/0022-1317-66-3-465. [DOI] [PubMed] [Google Scholar]
  14. Kistner O., Müller K., Scholtissek C. Differential phosphorylation of the nucleoprotein of influenza A viruses. J Gen Virol. 1989 Sep;70(Pt 9):2421–2431. doi: 10.1099/0022-1317-70-9-2421. [DOI] [PubMed] [Google Scholar]
  15. Martin K., Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell. 1991 Oct 4;67(1):117–130. doi: 10.1016/0092-8674(91)90576-k. [DOI] [PubMed] [Google Scholar]
  16. Martin K., Helenius A. Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol. 1991 Jan;65(1):232–244. doi: 10.1128/jvi.65.1.232-244.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matlin K. S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol. 1981 Dec;91(3 Pt 1):601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller M., Reddy B. A., Kloc M., Li X. X., Dreyer C., Etkin L. D. The nuclear-cytoplasmic distribution of the Xenopus nuclear factor, xnf7, coincides with its state of phosphorylation during early development. Development. 1991 Oct;113(2):569–575. doi: 10.1242/dev.113.2.569. [DOI] [PubMed] [Google Scholar]
  19. Mittnacht S., Weinberg R. A. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell. 1991 May 3;65(3):381–393. doi: 10.1016/0092-8674(91)90456-9. [DOI] [PubMed] [Google Scholar]
  20. Mosialos G., Hamer P., Capobianco A. J., Laursen R. A., Gilmore T. D. A protein kinase-A recognition sequence is structurally linked to transformation by p59v-rel and cytoplasmic retention of p68c-rel. Mol Cell Biol. 1991 Dec;11(12):5867–5877. doi: 10.1128/mcb.11.12.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patterson S., Gross J., Oxford J. S. The intracellular distribution of influenza virus matrix protein and nucleoprotein in infected cells and their relationship to haemagglutinin in the plasma membrane. J Gen Virol. 1988 Aug;69(Pt 8):1859–1872. doi: 10.1099/0022-1317-69-8-1859. [DOI] [PubMed] [Google Scholar]
  22. Petri T., Dimmock N. J. Phosphorylation of influenza virus nucleoprotein in vivo. J Gen Virol. 1981 Nov;57(Pt 1):185–190. doi: 10.1099/0022-1317-57-1-185. [DOI] [PubMed] [Google Scholar]
  23. Privalsky M. L., Penhoet E. E. Influenza virus proteins: identity, synthesis, and modification analyzed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3625–3629. doi: 10.1073/pnas.75.8.3625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Privalsky M. L., Penhoet E. E. Phosphorylated protein component present in influenza virions. J Virol. 1977 Oct;24(1):401–405. doi: 10.1128/jvi.24.1.401-405.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rey O., Nayak D. P. Nuclear retention of M1 protein in a temperature-sensitive mutant of influenza (A/WSN/33) virus does not affect nuclear export of viral ribonucleoproteins. J Virol. 1992 Oct;66(10):5815–5824. doi: 10.1128/jvi.66.10.5815-5824.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richardson J. C., Akkina R. K. NS2 protein of influenza virus is found in purified virus and phosphorylated in infected cells. Arch Virol. 1991;116(1-4):69–80. doi: 10.1007/BF01319232. [DOI] [PubMed] [Google Scholar]
  27. Rihs H. P., Jans D. A., Fan H., Peters R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO J. 1991 Mar;10(3):633–639. doi: 10.1002/j.1460-2075.1991.tb07991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ritchey M. B., Palese P. Identification of the defective genes in three mutant groups of influenza virus. J Virol. 1977 Mar;21(3):1196–1204. doi: 10.1128/jvi.21.3.1196-1204.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sugiura A., Ueda M., Tobita K., Enomoto C. Further isolation and characterization of temperature-sensitive mutants of influenza virus. Virology. 1975 Jun;65(2):363–373. doi: 10.1016/0042-6822(75)90042-2. [DOI] [PubMed] [Google Scholar]
  30. Vulliet P. R., Hall F. L., Mitchell J. P., Hardie D. G. Identification of a novel proline-directed serine/threonine protein kinase in rat pheochromocytoma. J Biol Chem. 1989 Sep 25;264(27):16292–16298. [PubMed] [Google Scholar]
  31. Wakefield L., Brownlee G. G. RNA-binding properties of influenza A virus matrix protein M1. Nucleic Acids Res. 1989 Nov 11;17(21):8569–8580. doi: 10.1093/nar/17.21.8569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whalen A. M., Steward R. Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J Cell Biol. 1993 Nov;123(3):523–534. doi: 10.1083/jcb.123.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White J., Kartenbeck J., Helenius A. Membrane fusion activity of influenza virus. EMBO J. 1982;1(2):217–222. doi: 10.1002/j.1460-2075.1982.tb01150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yasuda J., Nakada S., Kato A., Toyoda T., Ishihama A. Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology. 1993 Sep;196(1):249–255. doi: 10.1006/viro.1993.1473. [DOI] [PubMed] [Google Scholar]
  35. Ye Z. P., Baylor N. W., Wagner R. R. Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol. 1989 Sep;63(9):3586–3594. doi: 10.1128/jvi.63.9.3586-3594.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ye Z. P., Pal R., Fox J. W., Wagner R. R. Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol. 1987 Feb;61(2):239–246. doi: 10.1128/jvi.61.2.239-246.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES