Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jan;69(1):492–498. doi: 10.1128/jvi.69.1.492-498.1995

Human immunodeficiency virus Tat induces functional unresponsiveness in T cells.

N Chirmule 1, S Than 1, S A Khan 1, S Pahwa 1
PMCID: PMC188597  PMID: 7983746

Abstract

Soluble proteins of the human immunodeficiency virus (HIV) might play a significant role in the pathogenesis of HIV infection. The addition of synthetic Tat peptides, but not that of the recombinant Nef or Vif protein, inhibited proliferative responses of CD4+ tetanus antigen-specific, exogenous interleukin-2 (IL-2)-independent T-cell clones in a dose-dependent manner. In addition, Tat peptides inhibited the anti-CD3 monoclonal antibody-induced proliferative responses of both purified CD4+ and CD8+ T cells. Tat did not affect proliferative responses induced by phorbol myristate acetate plus ionomycin. The Tat peptides at the concentrations used (0.1 to 3 micrograms/ml) did not affect the viability of the cells as determined by trypan blue exclusion. Treatment of Tat peptides with polyclonal Tat antibodies abrogated the inhibitory effect of Tat. Soluble Tat proteins secreted by HeLa cells transfected with the tat gene also inhibited antigen-induced proliferation of the T-cell clones. Tat inhibited the anti-CD3 monoclonal antibody-induced IL-2 mRNA expression and IL-2 secretion but did not affect IL-2 receptor alpha-chain mRNA or protein expression on peripheral blood T cells. Finally, treatment of T-cell clones with the Tat peptide did not affect the antigen-induced increase in intracellular calcium, hydrolysis of phosphatidyl inositol to inositol trisphosphate, or translocation of protein kinase C from the cytosol to the membrane. These studies demonstrate that the mechanism of the Tat-mediated inhibition of T-cell functions involves a phospholipase C gamma 1-independent pathway.

Full Text

The Full Text of this article is available as a PDF (306.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken C., Konner J., Landau N. R., Lenburg M. E., Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell. 1994 Mar 11;76(5):853–864. doi: 10.1016/0092-8674(94)90360-3. [DOI] [PubMed] [Google Scholar]
  2. Buonaguro L., Barillari G., Chang H. K., Bohan C. A., Kao V., Morgan R., Gallo R. C., Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol. 1992 Dec;66(12):7159–7167. doi: 10.1128/jvi.66.12.7159-7167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cefai D., Debre P., Kaczorek M., Idziorek T., Autran B., Bismuth G. Human immunodeficiency virus-1 glycoproteins gp120 and gp160 specifically inhibit the CD3/T cell-antigen receptor phosphoinositide transduction pathway. J Clin Invest. 1990 Dec;86(6):2117–2124. doi: 10.1172/JCI114950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirmule N., Kalyanaraman V. S., Oyaizu N., Slade H. B., Pahwa S. Inhibition of functional properties of tetanus antigen-specific T-cell clones by envelope glycoprotein GP120 of human immunodeficiency virus. Blood. 1990 Jan 1;75(1):152–159. [PubMed] [Google Scholar]
  5. Chirmule N., Oyaizu N., Saxinger C., Pahwa S. Nef protein of HIV-1 has B-cell stimulatory activity. AIDS. 1994 Jun;8(6):733–734. doi: 10.1097/00002030-199406000-00002. [DOI] [PubMed] [Google Scholar]
  6. Cullen B. R. Regulation of HIV-1 gene expression. FASEB J. 1991 Jul;5(10):2361–2368. doi: 10.1096/fasebj.5.10.1712325. [DOI] [PubMed] [Google Scholar]
  7. Dalgleish A. G. Immunobiological aspects of HIV treatment. Curr Opin Immunol. 1993 Aug;5(4):608–614. doi: 10.1016/0952-7915(93)90045-t. [DOI] [PubMed] [Google Scholar]
  8. Ensoli B., Barillari G., Salahuddin S. Z., Gallo R. C., Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature. 1990 May 3;345(6270):84–86. doi: 10.1038/345084a0. [DOI] [PubMed] [Google Scholar]
  9. Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., Wingfield P., Gallo R. C. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol. 1993 Jan;67(1):277–287. doi: 10.1128/jvi.67.1.277-287.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flores S. C., Marecki J. C., Harper K. P., Bose S. K., Nelson S. K., McCord J. M. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7632–7636. doi: 10.1073/pnas.90.16.7632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furtado M. R., Murphy R., Wolinsky S. M. Quantification of human immunodeficiency virus type 1 tat mRNA as a marker for assessing the efficacy of antiretroviral therapy. J Infect Dis. 1993 Jan;167(1):213–216. doi: 10.1093/infdis/167.1.213. [DOI] [PubMed] [Google Scholar]
  12. Gurley R. J., Ikeuchi K., Byrn R. A., Anderson K., Groopman J. E. CD4+ lymphocyte function with early human immunodeficiency virus infection. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1993–1997. doi: 10.1073/pnas.86.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jeyapaul J., Reddy M. R., Khan S. A. Activity of synthetic tat peptides in human immunodeficiency virus type 1 long terminal repeat-promoted transcription in a cell-free system. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7030–7034. doi: 10.1073/pnas.87.18.7030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones K. A., Peterlin B. M. Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem. 1994;63:717–743. doi: 10.1146/annurev.bi.63.070194.003441. [DOI] [PubMed] [Google Scholar]
  15. Jones K. A. Tat and the HIV-1 promoter. Curr Opin Cell Biol. 1993 Jun;5(3):461–468. doi: 10.1016/0955-0674(93)90012-f. [DOI] [PubMed] [Google Scholar]
  16. Kashanchi F., Piras G., Radonovich M. F., Duvall J. F., Fattaey A., Chiang C. M., Roeder R. G., Brady J. N. Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature. 1994 Jan 20;367(6460):295–299. doi: 10.1038/367295a0. [DOI] [PubMed] [Google Scholar]
  17. Laurence J., Friedman S. M., Chartash E. K., Crow M. K., Posnett D. N. Human immunodeficiency virus infection of helper T cell clones. Early proliferative defects despite intact antigen-specific recognition and interleukin 4 secretion. J Clin Invest. 1989 Jun;83(6):1843–1848. doi: 10.1172/JCI114090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ledbetter J. A., Deans J. P., Aruffo A., Grosmaire L. S., Kanner S. B., Bolen J. B., Schieven G. L. CD4, CD8 and the role of CD45 in T-cell activation. Curr Opin Immunol. 1993 Jun;5(3):334–340. doi: 10.1016/0952-7915(93)90050-3. [DOI] [PubMed] [Google Scholar]
  19. Lisziewicz J., Sun D., Smythe J., Lusso P., Lori F., Louie A., Markham P., Rossi J., Reitz M., Gallo R. C. Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8000–8004. doi: 10.1073/pnas.90.17.8000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lotz M., Clark-Lewis I., Ganu V. HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes. J Cell Biol. 1994 Feb;124(3):365–371. doi: 10.1083/jcb.124.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mann D. A., Frankel A. D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 1991 Jul;10(7):1733–1739. doi: 10.1002/j.1460-2075.1991.tb07697.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyaard L., Otto S. A., Schuitemaker H., Miedema F. Effects of HIV-1 Tat protein on human T cell proliferation. Eur J Immunol. 1992 Oct;22(10):2729–2732. doi: 10.1002/eji.1830221038. [DOI] [PubMed] [Google Scholar]
  23. Meyaard L., Schuitemaker H., Miedema F. T-cell dysfunction in HIV infection: anergy due to defective antigen-presenting cell function? Immunol Today. 1993 Apr;14(4):161–164. doi: 10.1016/0167-5699(93)90279-T. [DOI] [PubMed] [Google Scholar]
  24. Miedema F., Petit A. J., Terpstra F. G., Schattenkerk J. K., de Wolf F., Al B. J., Roos M., Lange J. M., Danner S. A., Goudsmit J. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest. 1988 Dec;82(6):1908–1914. doi: 10.1172/JCI113809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Niederman T. M., Hastings W. R., Luria S., Bandres J. C., Ratner L. HIV-1 Nef protein inhibits the recruitment of AP-1 DNA-binding activity in human T-cells. Virology. 1993 May;194(1):338–344. doi: 10.1006/viro.1993.1264. [DOI] [PubMed] [Google Scholar]
  26. Pahwa S., Pahwa R., Saxinger C., Gallo R. C., Good R. A. Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8198–8202. doi: 10.1073/pnas.82.23.8198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  28. Pantaleo G., Graziosi C., Fauci A. S. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993 Feb 4;328(5):327–335. doi: 10.1056/NEJM199302043280508. [DOI] [PubMed] [Google Scholar]
  29. Pantaleo G., Koenig S., Baseler M., Lane H. C., Fauci A. S. Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS. Expansion in vivo of a nonclonogenic CD3+CD8+DR+CD25- T cell population. J Immunol. 1990 Mar 1;144(5):1696–1704. [PubMed] [Google Scholar]
  30. Purvis S. F., Georges D. L., Williams T. M., Lederman M. M. Suppression of interleukin-2 and interleukin-2 receptor expression in Jurkat cells stably expressing the human immunodeficiency virus Tat protein. Cell Immunol. 1992 Oct 1;144(1):32–42. doi: 10.1016/0008-8749(92)90223-c. [DOI] [PubMed] [Google Scholar]
  31. Rosen C. A., Sodroski J. G., Goh W. C., Dayton A. I., Lippke J., Haseltine W. A. Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature. 1986 Feb 13;319(6054):555–559. doi: 10.1038/319555a0. [DOI] [PubMed] [Google Scholar]
  32. Subramanyam M., Gutheil W. G., Bachovchin W. W., Huber B. T. Mechanism of HIV-1 Tat induced inhibition of antigen-specific T cell responsiveness. J Immunol. 1993 Mar 15;150(6):2544–2553. [PubMed] [Google Scholar]
  33. Terwilliger E., Proulx J., Sodroski J., Haseltine W. A. Cell lines that express stably env gene products from three strains of HIV-1. J Acquir Immune Defic Syndr. 1988;1(4):317–323. [PubMed] [Google Scholar]
  34. Viscidi R. P., Mayur K., Lederman H. M., Frankel A. D. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science. 1989 Dec 22;246(4937):1606–1608. doi: 10.1126/science.2556795. [DOI] [PubMed] [Google Scholar]
  35. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  36. Weissman I. Approaches to an understanding of pathogenetic mechanisms in AIDS. Rev Infect Dis. 1988 Mar-Apr;10(2):385–398. doi: 10.1093/clinids/10.2.385. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES