Abstract
We have studied selected mutants of human immunodeficiency virus type 2 (HIV-2) reverse transcriptase (RT) in a cell-free system in order to assess whether the mutant proteins exhibit a reduction in the sensitivity to nucleoside analog inhibitors similar to that of HIV-1 RT. We have modified, by site-directed mutagenesis, several of those amino acid residues so that their equivalent substitutions in HIV-1 RT have led to the formation of HIV-1 RT variants with the highest degree of resistance to dideoxynucleoside triphosphates (i.e., Glu-89-->Gly, Leu-74-->Val, and Ser-215-->Tyr [which is comparable to the Thr-215-->Tyr mutation of HIV-1 RT] and the double mutations Glu-89-->Gly/Ser-215-->Tyr and and Leu-74-->Val/Ser-215-->Tyr). The similarity found between resistance of the newly generated HIV-2 RT mutants to nucleoside analogs and that of the comparable mutants of HIV-1 RT can support the notion that the overall protein folding around the DNA polymerase active site in HIV-2 RT is quite similar to that of HIV-1 RT.
Full Text
The Full Text of this article is available as a PDF (188.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakhanashvili M., Hizi A. Fidelity of the reverse transcriptase of human immunodeficiency virus type 2. FEBS Lett. 1992 Jul 20;306(2-3):151–156. doi: 10.1016/0014-5793(92)80988-s. [DOI] [PubMed] [Google Scholar]
- Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983 May 20;220(4599):868–871. doi: 10.1126/science.6189183. [DOI] [PubMed] [Google Scholar]
- Boucher C. A., O'Sullivan E., Mulder J. W., Ramautarsing C., Kellam P., Darby G., Lange J. M., Goudsmit J., Larder B. A. Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J Infect Dis. 1992 Jan;165(1):105–110. doi: 10.1093/infdis/165.1.105. [DOI] [PubMed] [Google Scholar]
- Boyer P. L., Tantillo C., Jacobo-Molina A., Nanni R. G., Ding J., Arnold E., Hughes S. H. Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxynucleotides depends on template length; the sensitivity of drug-resistant mutants does not. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4882–4886. doi: 10.1073/pnas.91.11.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll S. S., Geib J., Olsen D. B., Stahlhut M., Shafer J. A., Kuo L. C. Sensitivity of HIV-1 reverse transcriptase and its mutants to inhibition by azidothymidine triphosphate. Biochemistry. 1994 Mar 1;33(8):2113–2120. doi: 10.1021/bi00174a018. [DOI] [PubMed] [Google Scholar]
- Clavel F., Guétard D., Brun-Vézinet F., Chamaret S., Rey M. A., Santos-Ferreira M. O., Laurent A. G., Dauguet C., Katlama C., Rouzioux C. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986 Jul 18;233(4761):343–346. doi: 10.1126/science.2425430. [DOI] [PubMed] [Google Scholar]
- De Clercq E. HIV inhibitors targeted at the reverse transcriptase. AIDS Res Hum Retroviruses. 1992 Feb;8(2):119–134. doi: 10.1089/aid.1992.8.119. [DOI] [PubMed] [Google Scholar]
- De Clercq E. HIV resistance to reverse transcriptase inhibitors. Biochem Pharmacol. 1994 Jan 20;47(2):155–169. doi: 10.1016/0006-2952(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Eron J. J., Chow Y. K., Caliendo A. M., Videler J., Devore K. M., Cooley T. P., Liebman H. A., Kaplan J. C., Hirsch M. S., D'Aquila R. T. pol mutations conferring zidovudine and didanosine resistance with different effects in vitro yield multiply resistant human immunodeficiency virus type 1 isolates in vivo. Antimicrob Agents Chemother. 1993 Jul;37(7):1480–1487. doi: 10.1128/aac.37.7.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo R. C., Salahuddin S. Z., Popovic M., Shearer G. M., Kaplan M., Haynes B. F., Palker T. J., Redfield R., Oleske J., Safai B. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984 May 4;224(4648):500–503. doi: 10.1126/science.6200936. [DOI] [PubMed] [Google Scholar]
- Gao Q., Gu Z. X., Parniak M. A., Li X. G., Wainberg M. A. In vitro selection of variants of human immunodeficiency virus type 1 resistant to 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine. J Virol. 1992 Jan;66(1):12–19. doi: 10.1128/jvi.66.1.12-19.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goff S. P. Retroviral reverse transcriptase: synthesis, structure, and function. J Acquir Immune Defic Syndr. 1990;3(8):817–831. [PubMed] [Google Scholar]
- Hizi A., McGill C., Hughes S. H. Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1218–1222. doi: 10.1073/pnas.85.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hizi A., Shaharabany M. Functional analysis of novel selective mutants of the reverse transcriptase of human immunodeficiency virus type 1. J Biol Chem. 1992 Sep 15;267(26):18255–18258. [PubMed] [Google Scholar]
- Hizi A., Shaharabany M., Tal R., Hughes S. H. The effects of cysteine mutations on the reverse transcriptases of human immunodeficiency virus types 1 and 2. J Biol Chem. 1992 Jan 15;267(2):1293–1297. [PubMed] [Google Scholar]
- Hizi A., Tal R., Hughes S. H. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli. Virology. 1991 Jan;180(1):339–346. doi: 10.1016/0042-6822(91)90038-d. [DOI] [PubMed] [Google Scholar]
- Hizi A., Tal R., Shaharabany M., Loya S. Catalytic properties of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. J Biol Chem. 1991 Apr 5;266(10):6230–6239. [PubMed] [Google Scholar]
- Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
- Lacey S. F., Larder B. A. Mutagenic study of codons 74 and 215 of the human immunodeficiency virus type 1 reverse transcriptase, which are significant in nucleoside analog resistance. J Virol. 1994 May;68(5):3421–3424. doi: 10.1128/jvi.68.5.3421-3424.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Grice S. F., Grüninger-Leitch F. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem. 1990 Jan 26;187(2):307–314. doi: 10.1111/j.1432-1033.1990.tb15306.x. [DOI] [PubMed] [Google Scholar]
- Loya S., Tal R., Hughes S. H., Hizi A. The effects of cysteine mutations on the catalytic activities of the reverse transcriptase of human immunodeficiency virus type-1. J Biol Chem. 1992 Jul 15;267(20):13879–13883. [PubMed] [Google Scholar]
- Martin J. L., Wilson J. E., Haynes R. L., Furman P. A. Mechanism of resistance of human immunodeficiency virus type 1 to 2',3'-dideoxyinosine. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6135–6139. doi: 10.1073/pnas.90.13.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad V. R., Lowy I., de los Santos T., Chiang L., Goff S. P. Isolation and characterization of a dideoxyguanosine triphosphate-resistant mutant of human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11363–11367. doi: 10.1073/pnas.88.24.11363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn T. C. Population migration and the spread of types 1 and 2 human immunodeficiency viruses. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2407–2414. doi: 10.1073/pnas.91.7.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaharabany M., Hizi A. The DNA-dependent and RNA-dependent DNA polymerase activities of the reverse transcriptases of human immunodeficiency viruses types 1 and 2. AIDS Res Hum Retroviruses. 1991 Nov;7(11):883–888. doi: 10.1089/aid.1991.7.883. [DOI] [PubMed] [Google Scholar]
- Shaharabany M., Hizi A. The catalytic functions of chimeric reverse transcriptases of human immunodeficiency viruses type 1 and type 2. J Biol Chem. 1992 Feb 25;267(6):3674–3678. [PubMed] [Google Scholar]
- Song Q., Yang G., Goff S. P., Prasad V. R. Mutagenesis of the Glu-89 residue in human immunodeficiency virus type 1 (HIV-1) and HIV-2 reverse transcriptases: effects on nucleoside analog resistance. J Virol. 1992 Dec;66(12):7568–7571. doi: 10.1128/jvi.66.12.7568-7571.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitcomb J. M., Hughes S. H. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 1992;8:275–306. doi: 10.1146/annurev.cb.08.110192.001423. [DOI] [PubMed] [Google Scholar]