Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1991 Sep;139(3):589–598.

A comparative immunohistochemical study of Kuru and senile plaques with a special reference to glial reactions at various stages of amyloid plaque formation.

M Miyazono 1, T Iwaki 1, T Kitamoto 1, Y Kaneko 1, K Doh-ura 1, J Tateishi 1
PMCID: PMC1886224  PMID: 1679596

Abstract

The authors examined 10 patients with Gerstmann-Sträussler syndrome or Creutzfeldt-Jakob disease and 10 with Alzheimer's disease (AD). Immunohistochemistry using anti-prion protein (PrP) and anti-beta/A4 protein (beta/A4) coupled with formic acid pretreatment could detect Congophilic and non-Congophilic deposits. Prion protein deposits were classified into five types and compared with types of beta/A4 deposits. Kuru plaques with multicentric cores and fine granular deposits were a characteristic feature of PrP deposits. Some types of PrP or beta/A4 deposits depend on the anatomic sites. To clarify the relationship of microglia and astrocytes to PrP or beta/A4 deposits, double-immunostaining method was performed. In both kuru and senile plaques, microglia were closely linked to the Congophilic plaques. Astrocytes, however, extended their processes toward the plaques even in the non-Congophilic plaques. These observations strongly suggest that similar glial association with plaque formation may be involved in both kuru and senile plaques, although the amyloid core proteins differ.

Full text

PDF
589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brion J. P., Fraser H., Flament-Durand J., Dickinson A. G. Amyloid scrapie plaques in mice, and Alzheimer senile plaques, share common antigens with tau, a microtubule-associated protein. Neurosci Lett. 1987 Jul 9;78(1):113–118. doi: 10.1016/0304-3940(87)90571-4. [DOI] [PubMed] [Google Scholar]
  2. Brown P. Central nervous system amyloidoses: a comparison of Alzheimer's disease and Creutzfeldt-Jakob disease. Neurology. 1989 Aug;39(8):1103–1105. doi: 10.1212/wnl.39.8.1103. [DOI] [PubMed] [Google Scholar]
  3. Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983;25(2):193–203. doi: 10.1111/j.1432-0436.1984.tb01355.x. [DOI] [PubMed] [Google Scholar]
  4. Delacourte A. General and dramatic glial reaction in Alzheimer brains. Neurology. 1990 Jan;40(1):33–37. doi: 10.1212/wnl.40.1.33. [DOI] [PubMed] [Google Scholar]
  5. Doh-ura K., Tateishi J., Kitamoto T., Sasaki H., Sakaki Y. Creutzfeldt-Jakob disease patients with congophilic kuru plaques have the missense variant prion protein common to Gerstmann-Sträussler syndrome. Ann Neurol. 1990 Feb;27(2):121–126. doi: 10.1002/ana.410270205. [DOI] [PubMed] [Google Scholar]
  6. Duffy P. E., Rapport M., Graf L. Glial fibrillary acidic protein and Alzheimer-type senile dementia. Neurology. 1980 Jul;30(7 Pt 1):778–782. doi: 10.1212/wnl.30.7.778. [DOI] [PubMed] [Google Scholar]
  7. Glenner G. G., Wong C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984 May 16;120(3):885–890. doi: 10.1016/s0006-291x(84)80190-4. [DOI] [PubMed] [Google Scholar]
  8. Goldman J. E., Chiu F. C. Growth kinetics, cell shape, and the cytoskeleton of primary astrocyte cultures. J Neurochem. 1984 Jan;42(1):175–184. doi: 10.1111/j.1471-4159.1984.tb09714.x. [DOI] [PubMed] [Google Scholar]
  9. Graeber M. B., Streit W. J. Microglia: immune network in the CNS. Brain Pathol. 1990 Sep;1(1):2–5. doi: 10.1111/j.1750-3639.1990.tb00630.x. [DOI] [PubMed] [Google Scholar]
  10. Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
  11. HIRANO A., ZIMMERMAN H. M. Silver impregnation of nerve cells and fibers in celloidin sections. A simple impregnation technique. Arch Neurol. 1962 Feb;6:114–122. doi: 10.1001/archneur.1962.00450200028003. [DOI] [PubMed] [Google Scholar]
  12. Hsu S. M., Soban E. Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem. 1982 Oct;30(10):1079–1082. doi: 10.1177/30.10.6182185. [DOI] [PubMed] [Google Scholar]
  13. Ikeda S., Allsop D., Glenner G. G. Morphology and distribution of plaque and related deposits in the brains of Alzheimer's disease and control cases. An immunohistochemical study using amyloid beta-protein antibody. Lab Invest. 1989 Jan;60(1):113–122. [PubMed] [Google Scholar]
  14. Itagaki S., McGeer P. L., Akiyama H., Zhu S., Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989 Oct;24(3):173–182. doi: 10.1016/0165-5728(89)90115-x. [DOI] [PubMed] [Google Scholar]
  15. Kaneko Y., Kitamoto T., Tateishi J., Yamaguchi K. Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol. 1989;79(2):129–136. doi: 10.1007/BF00294369. [DOI] [PubMed] [Google Scholar]
  16. Khachaturian Z. S. Diagnosis of Alzheimer's disease. Arch Neurol. 1985 Nov;42(11):1097–1105. doi: 10.1001/archneur.1985.04060100083029. [DOI] [PubMed] [Google Scholar]
  17. Kitamoto T., Ogomori K., Tateishi J., Prusiner S. B. Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest. 1987 Aug;57(2):230–236. [PubMed] [Google Scholar]
  18. Kitamoto T., Tateishi J. Immunohistochemical confirmation of Creutzfeldt-Jakob disease with a long clinical course with amyloid plaque core antibodies. Am J Pathol. 1988 Jun;131(3):435–443. [PMC free article] [PubMed] [Google Scholar]
  19. Lowe J., McDermott H., Kenward N., Landon M., Mayer R. J., Bruce M., McBride P., Somerville R. A., Hope J. Ubiquitin conjugate immunoreactivity in the brains of scrapie infected mice. J Pathol. 1990 Sep;162(1):61–66. doi: 10.1002/path.1711620112. [DOI] [PubMed] [Google Scholar]
  20. Mandybur T. I., Chuirazzi C. C. Astrocytes and the plaques of Alzheimer's disease. Neurology. 1990 Apr;40(4):635–639. doi: 10.1212/wnl.40.4.635. [DOI] [PubMed] [Google Scholar]
  21. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGeer P. L., Itagaki S., Boyes B. E., McGeer E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988 Aug;38(8):1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
  23. McGeer P. L., Itagaki S., Tago H., McGeer E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett. 1987 Aug 18;79(1-2):195–200. doi: 10.1016/0304-3940(87)90696-3. [DOI] [PubMed] [Google Scholar]
  24. Ogomori K., Kitamoto T., Tateishi J., Sato Y., Suetsugu M., Abe M. Beta-protein amyloid is widely distributed in the central nervous system of patients with Alzheimer's disease. Am J Pathol. 1989 Feb;134(2):243–251. [PMC free article] [PubMed] [Google Scholar]
  25. Ogomori K., Kitamoto T., Tateishi J., Sato Y., Tashima T. Aging and cerebral amyloid: early detection of amyloid in the human brain using biochemical extraction and immunostain. J Gerontol. 1988 Nov;43(6):B157–B162. doi: 10.1093/geronj/43.6.b157. [DOI] [PubMed] [Google Scholar]
  26. Ohgami T., Kitamoto T., Shin R. W., Kaneko Y., Ogomori K., Tateishi J. Increased senile plaques without microglia in Alzheimer's disease. Acta Neuropathol. 1991;81(3):242–247. doi: 10.1007/BF00305864. [DOI] [PubMed] [Google Scholar]
  27. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  28. Rozemuller J. M., Eikelenboom P., Stam F. C., Beyreuther K., Masters C. L. A4 protein in Alzheimer's disease: primary and secondary cellular events in extracellular amyloid deposition. J Neuropathol Exp Neurol. 1989 Nov;48(6):674–691. doi: 10.1097/00005072-198911000-00009. [DOI] [PubMed] [Google Scholar]
  29. Shin R. W., Ogomori K., Kitamoto T., Tateishi J. Increased tau accumulation in senile plaques as a hallmark in Alzheimer's disease. Am J Pathol. 1989 Jun;134(6):1365–1371. [PMC free article] [PubMed] [Google Scholar]
  30. Tateishi J., Ohta M., Koga M., Sato Y., Kuroiwa Y. Transmission of chronic spongiform encephalopathy with kuru plaques from humans to small rodents. Ann Neurol. 1979 Jun;5(6):581–584. doi: 10.1002/ana.410050616. [DOI] [PubMed] [Google Scholar]
  31. Ulrich J. Alzheimer changes in nondemented patients younger than sixty-five: possible early stages of Alzheimer's disease and senile dementia of Alzheimer type. Ann Neurol. 1985 Mar;17(3):273–277. doi: 10.1002/ana.410170309. [DOI] [PubMed] [Google Scholar]
  32. Yamaguchi H., Hirai S., Morimatsu M., Shoji M., Ihara Y. A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by beta protein immunostaining. Acta Neuropathol. 1988;76(6):541–549. doi: 10.1007/BF00689591. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES