Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Feb;69(2):695–700. doi: 10.1128/jvi.69.2.695-700.1995

Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH.

S L Allison 1, J Schalich 1, K Stiasny 1, C W Mandl 1, C Kunz 1, F X Heinz 1
PMCID: PMC188630  PMID: 7529335

Abstract

The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network.

Full Text

The Full Text of this article is available as a PDF (265.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandriss M. W., Schlesinger J. J. Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: effects of chloroquine and cytochalasin B. J Gen Virol. 1984 Apr;65(Pt 4):791–794. doi: 10.1099/0022-1317-65-4-791. [DOI] [PubMed] [Google Scholar]
  2. Bron R., Wahlberg J. M., Garoff H., Wilschut J. Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J. 1993 Feb;12(2):693–701. doi: 10.1002/j.1460-2075.1993.tb05703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambers T. J., Hahn C. S., Galler R., Rice C. M. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. [DOI] [PubMed] [Google Scholar]
  4. Desprès P., Frenkiel M. P., Deubel V. Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology. 1993 Sep;196(1):209–219. doi: 10.1006/viro.1993.1469. [DOI] [PubMed] [Google Scholar]
  5. Garoff H. Cross-linking of the spike glycoproteins in Semliki Forest virus with dimethylsuberimidate. Virology. 1974 Dec;62(2):385–392. doi: 10.1016/0042-6822(74)90400-0. [DOI] [PubMed] [Google Scholar]
  6. Gollins S. W., Porterfield J. S. Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. J Gen Virol. 1985 Sep;66(Pt 9):1969–1982. doi: 10.1099/0022-1317-66-9-1969. [DOI] [PubMed] [Google Scholar]
  7. Gollins S. W., Porterfield J. S. The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride. J Gen Virol. 1986 Sep;67(Pt 9):1941–1950. doi: 10.1099/0022-1317-67-9-1941. [DOI] [PubMed] [Google Scholar]
  8. Gollins S. W., Porterfield J. S. pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J Gen Virol. 1986 Jan;67(Pt 1):157–166. doi: 10.1099/0022-1317-67-1-157. [DOI] [PubMed] [Google Scholar]
  9. Guirakhoo F., Bolin R. A., Roehrig J. T. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology. 1992 Dec;191(2):921–931. doi: 10.1016/0042-6822(92)90267-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guirakhoo F., Heinz F. X., Kunz C. Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology. 1989 Mar;169(1):90–99. doi: 10.1016/0042-6822(89)90044-5. [DOI] [PubMed] [Google Scholar]
  11. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol. 1991 Jun;72(Pt 6):1323–1329. doi: 10.1099/0022-1317-72-6-1323. [DOI] [PubMed] [Google Scholar]
  12. Guirakhoo F., Hunt A. R., Lewis J. G., Roehrig J. T. Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology. 1993 May;194(1):219–223. doi: 10.1006/viro.1993.1252. [DOI] [PubMed] [Google Scholar]
  13. Heinz F. X., Kunz C. Chemical crosslinking of tick-borne encephalitis virus and its subunits. J Gen Virol. 1980 Feb;46(2):301–309. doi: 10.1099/0022-1317-46-2-301. [DOI] [PubMed] [Google Scholar]
  14. Heinz F. X., Kunz C. Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: comparison with other flaviviruses. J Gen Virol. 1981 Dec;57(Pt 2):263–274. doi: 10.1099/0022-1317-57-2-263. [DOI] [PubMed] [Google Scholar]
  15. Heinz F. X., Kunz C. Isolation of dimeric glycoprotein subunits from tick-borne encephalitis virus. Intervirology. 1980;13(3):169–177. doi: 10.1159/000149122. [DOI] [PubMed] [Google Scholar]
  16. Heinz F. X., Mandl C. W., Holzmann H., Kunz C., Harris B. A., Rey F., Harrison S. C. The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J Virol. 1991 Oct;65(10):5579–5583. doi: 10.1128/jvi.65.10.5579-5583.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heinz F. X., Stiasny K., Püschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology. 1994 Jan;198(1):109–117. doi: 10.1006/viro.1994.1013. [DOI] [PubMed] [Google Scholar]
  18. Heinz F. X., Tuma W., Guirakhoo F., Kunz C. A model study of the use of monoclonal antibodies in capture enzyme immunoassays for antigen quantification exploiting the epitope map of tick-borne encephalitis virus. J Biol Stand. 1986 Apr;14(2):133–141. doi: 10.1016/0092-1157(86)90032-6. [DOI] [PubMed] [Google Scholar]
  19. Justman J., Klimjack M. R., Kielian M. Role of spike protein conformational changes in fusion of Semliki Forest virus. J Virol. 1993 Dec;67(12):7597–7607. doi: 10.1128/jvi.67.12.7597-7607.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kielian M., Jungerwirth S. Mechanisms of enveloped virus entry into cells. Mol Biol Med. 1990 Feb;7(1):17–31. [PubMed] [Google Scholar]
  21. Kimura T., Ohyama A. Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. J Gen Virol. 1988 Jun;69(Pt 6):1247–1254. doi: 10.1099/0022-1317-69-6-1247. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  23. Mandl C. W., Heinz F. X., Kunz C. Sequence of the structural proteins of tick-borne encephalitis virus (western subtype) and comparative analysis with other flaviviruses. Virology. 1988 Sep;166(1):197–205. doi: 10.1016/0042-6822(88)90161-4. [DOI] [PubMed] [Google Scholar]
  24. Marsh M., Helenius A. Virus entry into animal cells. Adv Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ng M. L., Lau L. C. Possible involvement of receptors in the entry of Kunjin virus into Vero cells. Arch Virol. 1988;100(3-4):199–211. doi: 10.1007/BF01487683. [DOI] [PubMed] [Google Scholar]
  26. Randolph V. B., Stollar V. Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J Gen Virol. 1990 Aug;71(Pt 8):1845–1850. doi: 10.1099/0022-1317-71-8-1845. [DOI] [PubMed] [Google Scholar]
  27. Randolph V. B., Winkler G., Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990 Feb;174(2):450–458. doi: 10.1016/0042-6822(90)90099-d. [DOI] [PubMed] [Google Scholar]
  28. Roehrig J. T., Johnson A. J., Hunt A. R., Bolin R. A., Chu M. C. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 1990 Aug;177(2):668–675. doi: 10.1016/0042-6822(90)90532-v. [DOI] [PubMed] [Google Scholar]
  29. Summers P. L., Cohen W. H., Ruiz M. M., Hase T., Eckels K. H. Flaviviruses can mediate fusion from without in Aedes albopictus mosquito cell cultures. Virus Res. 1989 Apr;12(4):383–392. doi: 10.1016/0168-1702(89)90095-6. [DOI] [PubMed] [Google Scholar]
  30. Vorovitch M. F., Timofeev A. V., Atanadze S. N., Tugizov S. M., Kushch A. A., Elbert L. B. pH-dependent fusion of tick-borne encephalitis virus with artificial membranes. Arch Virol. 1991;118(1-2):133–138. doi: 10.1007/BF01311309. [DOI] [PubMed] [Google Scholar]
  31. Wahlberg J. M., Bron R., Wilschut J., Garoff H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol. 1992 Dec;66(12):7309–7318. doi: 10.1128/jvi.66.12.7309-7318.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wengler G., Wengler G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol. 1989 Jun;63(6):2521–2526. doi: 10.1128/jvi.63.6.2521-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wengler G., Wengler G., Nowak T., Wahn K. Analysis of the influence of proteolytic cleavage on the structural organization of the surface of the West Nile flavivirus leads to the isolation of a protease-resistant E protein oligomer from the viral surface. Virology. 1987 Sep;160(1):210–219. doi: 10.1016/0042-6822(87)90062-6. [DOI] [PubMed] [Google Scholar]
  34. White J. M. Viral and cellular membrane fusion proteins. Annu Rev Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
  35. Wiley D. C., Skehel J. J., Waterfield M. Evidence from studies with a cross-linking reagent that the haemagglutinin of influenza virus is a trimer. Virology. 1977 Jun 15;79(2):446–448. doi: 10.1016/0042-6822(77)90371-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES