Abstract
Arrhythmias are a common and potentially life-threatening complication of myocardial ischemia and infarction in humans. The structural pathways for the rapid intercellular conduction of the electrical impulse that stimulates coordinated contraction in the myocardium are formed by the gap junctions situated at intercalated disks. By raising antibodies to cardiac gap-junctional protein, and using these antibodies in an immunohistochemical procedure in combination with the technique of laser scanning confocal microscopy, we have succeeded in localizing gap junctions, with a clarity not previously possible, through thick volumes of human myocardial tissue. To explore the structural basis for ischemia and infarction-related arrhythmogenesis, antibody labeling and laser scanning confocal microscopy were applied to study the organization, distribution, and other characteristics of gap junctions in the explanted hearts of patients undergoing cardiac transplantation for advanced ischemic heart disease. In areas of myocardium free from histologically detectable structural damage, there was no significant difference in the size of distribution of labeled gap junctions, or in their number per intercalated disk, between left ventricular tissue (in which functional impairment was severe) and right ventricular tissue (in which functional impairment was minimal). However, in myocytes at the border of healed infarcts--zones to which the slow conduction responsible for reentry arrhythmias has been localized--the organization of gap junctions was markedly disordered; instead of being aggregated into discrete intercalated disks, gap-junctional immunostaining was spread extensively over myocyte surfaces. Some infarct zones were bridged by continuous strands of myocytes, coupled to one another by gap junctions, thereby linking healthy myocardium on either side. At their thinnest, these bridges were in some instances no wider than a single attenuated myocyte. The conclusions are 1) a widespread, generalized derangement of gap junction organization does not appear to underlie functional impairment in the ischemic heart, 2) a disorderly arrangement typifies gap junctions in myocytes of the infarct border zone, and this may contribute to alterations in conduction that are capable of precipitating reentry arrhythmias, and 3) delicate chains of myocytes traverse some healed infarcts, apparently forming electrically coupled bridges across what would otherwise constitute blocked zones. The weakest link in this chain can be a single, degenerating myocyte; avoidance of arrhythmia may therefore depend on the continued survival of this single cell.
Full text
PDF




















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beyer E. C., Paul D. L., Goodenough D. A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987 Dec;105(6 Pt 1):2621–2629. doi: 10.1083/jcb.105.6.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun J., Abney J. R., Owicki J. C. How a gap junction maintains its structure. 1984 Jul 26-Aug 1Nature. 310(5975):316–318. doi: 10.1038/310316a0. [DOI] [PubMed] [Google Scholar]
- Buja L. M., Ferrans V. J., Maron B. J. Intracytoplasmic junctions in cardiac muscle cells. Am J Pathol. 1974 Mar;74(3):613–647. [PMC free article] [PubMed] [Google Scholar]
- Dillon S. M., Allessie M. A., Ursell P. C., Wit A. L. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res. 1988 Jul;63(1):182–206. doi: 10.1161/01.res.63.1.182. [DOI] [PubMed] [Google Scholar]
- Ebihara L., Beyer E. C., Swenson K. I., Paul D. L., Goodenough D. A. Cloning and expression of a Xenopus embryonic gap junction protein. Science. 1989 Mar 3;243(4895):1194–1195. doi: 10.1126/science.2466337. [DOI] [PubMed] [Google Scholar]
- Factor S. M., Sonnenblick E. H., Kirk E. S. The histologic border zone of acute myocardial infarction--islands or peninsulas? Am J Pathol. 1978 Jul;92(1):111–124. [PMC free article] [PubMed] [Google Scholar]
- Forbes M. S., Sperelakis N. Intercalated discs of mammalian heart: a review of structure and function. Tissue Cell. 1985;17(5):605–648. doi: 10.1016/0040-8166(85)90001-1. [DOI] [PubMed] [Google Scholar]
- Gimlich R. L., Kumar N. M., Gilula N. B. Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus. J Cell Biol. 1988 Sep;107(3):1065–1073. doi: 10.1083/jcb.107.3.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gourdie R. G., Green C. R., Severs N. J. Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. J Cell Sci. 1991 May;99(Pt 1):41–55. doi: 10.1242/jcs.99.1.41. [DOI] [PubMed] [Google Scholar]
- Gourdie R. G., Harfst E., Severs N. J., Green C. R. Cardiac gap junctions in rat ventricle: localization using site-directed antibodies and laser scanning confocal microscopy. Cardioscience. 1990 Mar;1(1):75–82. [PubMed] [Google Scholar]
- Green C. R. Evidence mounts for the role of gap junctions during development. Bioessays. 1988 Jan;8(1):7–10. doi: 10.1002/bies.950080103. [DOI] [PubMed] [Google Scholar]
- Harfst E., Severs N. J., Green C. R. Cardiac myocyte gap junctions: evidence for a major connexon protein with an apparent relative molecular mass of 70,000. J Cell Sci. 1990 Aug;96(Pt 4):591–604. doi: 10.1242/jcs.96.4.591. [DOI] [PubMed] [Google Scholar]
- Hoffman B. F., Dangman K. H. Mechanisms for cardiac arrhythmias. Experientia. 1987 Oct 15;43(10):1049–1056. doi: 10.1007/BF01956038. [DOI] [PubMed] [Google Scholar]
- Kistler J., Christie D., Bullivant S. Homologies between gap junction proteins in lens, heart and liver. Nature. 1988 Feb 25;331(6158):721–723. doi: 10.1038/331721a0. [DOI] [PubMed] [Google Scholar]
- Kléber A. G. Conduction of the impulse in the ischemic myocardium--implications for malignant ventricular arrhythmias. Experientia. 1987 Oct 15;43(10):1056–1061. doi: 10.1007/BF01956039. [DOI] [PubMed] [Google Scholar]
- Kumar N. M., Gilula N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol. 1986 Sep;103(3):767–776. doi: 10.1083/jcb.103.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane N. J., Swales L. S. Dispersal of junctional particles, not internalization, during the in vivo disappearance of gap junctions. Cell. 1980 Mar;19(3):579–586. doi: 10.1016/s0092-8674(80)80034-1. [DOI] [PubMed] [Google Scholar]
- Luke R. A., Beyer E. C., Hoyt R. H., Saffitz J. E. Quantitative analysis of intercellular connections by immunohistochemistry of the cardiac gap junction protein connexin43. Circ Res. 1989 Nov;65(5):1450–1457. doi: 10.1161/01.res.65.5.1450. [DOI] [PubMed] [Google Scholar]
- Milks L. C., Kumar N. M., Houghten R., Unwin N., Gilula N. B. Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 1988 Oct;7(10):2967–2975. doi: 10.1002/j.1460-2075.1988.tb03159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol. 1986 Jul;103(1):123–134. doi: 10.1083/jcb.103.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Severs N. J., Shovel K. S., Slade A. M., Powell T., Twist V. W., Green C. R. Fate of gap junctions in isolated adult mammalian cardiomyocytes. Circ Res. 1989 Jul;65(1):22–42. doi: 10.1161/01.res.65.1.22. [DOI] [PubMed] [Google Scholar]
- Severs N. J. The cardiac gap junction and intercalated disc. Int J Cardiol. 1990 Feb;26(2):137–173. doi: 10.1016/0167-5273(90)90030-9. [DOI] [PubMed] [Google Scholar]
- Spear J. F., Michelson E. L., Moore E. N. Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias. J Am Coll Cardiol. 1983 Apr;1(4):1099–1110. doi: 10.1016/s0735-1097(83)80112-0. [DOI] [PubMed] [Google Scholar]
- Toshimori H., Toshimori K., Oura C., Matsuo H. Immunohistochemistry and immunocytochemistry of atrial natriuretic polypeptide in porcine heart. Histochemistry. 1987;86(6):595–601. doi: 10.1007/BF00489553. [DOI] [PubMed] [Google Scholar]
- Ursell P. C., Gardner P. I., Albala A., Fenoglio J. J., Jr, Wit A. L. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res. 1985 Mar;56(3):436–451. doi: 10.1161/01.res.56.3.436. [DOI] [PubMed] [Google Scholar]
- Warner A. The gap junction. J Cell Sci. 1988 Jan;89(Pt 1):1–7. doi: 10.1242/jcs.89.1.1. [DOI] [PubMed] [Google Scholar]
- White J. G., Amos W. B., Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol. 1987 Jul;105(1):41–48. doi: 10.1083/jcb.105.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker P., Boughner D. R., Kloner R. A. Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol. 1989 Apr;134(4):879–893. [PMC free article] [PubMed] [Google Scholar]
- Yancey S. B., John S. A., Lal R., Austin B. J., Revel J. P. The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol. 1989 Jun;108(6):2241–2254. doi: 10.1083/jcb.108.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J. T., Nicholson B. J. Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol. 1989 Dec;109(6 Pt 2):3391–3401. doi: 10.1083/jcb.109.6.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmer D. B., Green C. R., Evans W. H., Gilula N. B. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem. 1987 Jun 5;262(16):7751–7763. [PubMed] [Google Scholar]











