Abstract
In situ hybridization was used on routinely processed paraffin-embedded tissue sections to study the synthesis of the basement membrane (BM) proteins laminin and type IV collagen in 14 cases of malignant fibrous histiocytoma (MFH). Complementary RNA probes coding for the pro-alpha 1 (IV) chain of human type IV collagen and the B1 chain of human laminin were used to detect the respective mRNAs. The results were correlated with the immunohistochemical reactivity of tumor cells to specific antibodies against the P1 fragment of laminin and the 7S domain of type IV collagen. Signals for the presence of laminin mRNA in atypical neoplastic tumor cells could be detected in 11 MFHs. None of the tumors could be shown to contain signals for type IV collagen mRNA in their cells, although such signals were detected in the endothelial cells of tumor capillaries. In the corresponding immunohistochemical stainings, nine MFHs showed intracytoplasmic staining of tumor cells for laminin and one tumor showed weak staining for type IV collagen in the neoplastic cells. The results show that the laminin immunoreactivity found in MFHs is due to synthesis in the tumor cells and not to endogenous uptake of this protein. Synthesis of laminin in the majority of MFHs is in accordance with the notion that these tumors originate from primitive mesenchymal cells in soft tissues.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrechtsen R., Nielsen M., Wewer U., Engvall E., Ruoslahti E. Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res. 1981 Dec;41(12 Pt 1):5076–5081. [PubMed] [Google Scholar]
- Autio-Harmainen H., Sandberg M., Pihlajaniemi T., Vuorio E. Synthesis of laminin and type IV collagen by trophoblastic cells and fibroblastic stromal cells in the early human placenta. Lab Invest. 1991 Apr;64(4):483–491. [PubMed] [Google Scholar]
- Barsky S. H., Siegal G. P., Jannotta F., Liotta L. A. Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest. 1983 Aug;49(2):140–147. [PubMed] [Google Scholar]
- Bosman F. T., Havenith M., Cleutjens J. P. Basement membranes in cancer. Ultrastruct Pathol. 1985;8(4):291–304. doi: 10.3109/01913128509141519. [DOI] [PubMed] [Google Scholar]
- Brecher M. E., Franklin W. A. Absence of mononuclear phagocyte antigens in malignant fibrous histiocytoma. Am J Clin Pathol. 1986 Sep;86(3):344–348. doi: 10.1093/ajcp/86.3.344. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Miettinen M., Rapola J., Foidart J. M. Demonstration of laminin, a basement membrane glycoprotein, in routinely processed formalin-fixed human tissues. Histochemistry. 1982;75(3):301–307. doi: 10.1007/BF00496733. [DOI] [PubMed] [Google Scholar]
- Fu Y. S., Gabbiani G., Kaye G. I., Lattes R. Malignant soft tissue tumors of probable histiocytic origin (malignant fibrous histiocytomas): general considerations and electron microscopic and tissue culture studies. Cancer. 1975 Jan;35(1):176–198. doi: 10.1002/1097-0142(197501)35:1<176::aid-cncr2820350123>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Hoefler H., Childers H., Montminy M. R., Lechan R. M., Goodman R. H., Wolfe H. J. In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J. 1986 Nov-Dec;18(11-12):597–604. doi: 10.1007/BF01675295. [DOI] [PubMed] [Google Scholar]
- Hoffman M. A., Dickersin G. R. Malignant fibrous histiocytoma: an ultrastructural study of eleven cases. Hum Pathol. 1983 Oct;14(10):913–922. doi: 10.1016/s0046-8177(83)80166-x. [DOI] [PubMed] [Google Scholar]
- Holland P. W., Harper S. J., McVey J. H., Hogan B. L. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol. 1987 Jul;105(1):473–482. doi: 10.1083/jcb.105.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huard T. K., Malinoff H. L., Wicha M. S. Macrophages express a plasma membrane receptor for basement membrane laminin. Am J Pathol. 1986 May;123(2):365–370. [PMC free article] [PubMed] [Google Scholar]
- Lawson C. W., Fisher C., Gatter K. C. An immunohistochemical study of differentiation in malignant fibrous histiocytoma. Histopathology. 1987 Apr;11(4):375–383. doi: 10.1111/j.1365-2559.1987.tb02642.x. [DOI] [PubMed] [Google Scholar]
- Liotta L. A., Abe S., Robey P. G., Martin G. R. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci U S A. 1979 May;76(5):2268–2272. doi: 10.1073/pnas.76.5.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez-Hernandez A., Amenta P. S. The basement membrane in pathology. Lab Invest. 1983 Jun;48(6):656–677. [PubMed] [Google Scholar]
- Miettinen M., Foidart J. M., Ekblom P. Immunohistochemical demonstration of laminin, the major glycoprotein of basement membranes, as an aid in the diagnosis of soft tissue tumors. Am J Clin Pathol. 1983 Mar;79(3):306–311. doi: 10.1093/ajcp/79.3.306. [DOI] [PubMed] [Google Scholar]
- Miettinen M., Soini Y. Malignant fibrous histiocytoma. Heterogeneous patterns of intermediate filament proteins by immunohistochemistry. Arch Pathol Lab Med. 1989 Dec;113(12):1363–1366. [PubMed] [Google Scholar]
- OZZELLO L., STOUT A. P., MURRAY M. R. Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer. 1963 Mar;16:331–344. doi: 10.1002/1097-0142(196303)16:3<331::aid-cncr2820160307>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
- Ogawa K., Oguchi M., Yamabe H., Nakashima Y., Hamashima Y. Distribution of collagen type IV in soft tissue tumors. An immunohistochemical study. Cancer. 1986 Jul 15;58(2):269–277. doi: 10.1002/1097-0142(19860715)58:2<269::aid-cncr2820580212>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Pihlajaniemi T., Tryggvason K., Myers J. C., Kurkinen M., Lebo R., Cheung M. C., Prockop D. J., Boyd C. D. cDNA clones coding for the pro-alpha1(IV) chain of human type IV procollagen reveal an unusual homology of amino acid sequences in two halves of the carboxyl-terminal domain. J Biol Chem. 1985 Jun 25;260(12):7681–7687. [PubMed] [Google Scholar]
- Risteli J., Bächinger H. P., Engel J., Furthmayr H., Timpl R. 7-S collagen: characterization of an unusual basement membrane structure. Eur J Biochem. 1980;108(1):239–250. doi: 10.1111/j.1432-1033.1980.tb04717.x. [DOI] [PubMed] [Google Scholar]
- Risteli L., Timpl R. Isolation and characterization of pepsin fragments of laminin from human placental and renal basement membranes. Biochem J. 1981 Mar 1;193(3):749–755. doi: 10.1042/bj1930749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandberg M., Autio-Harmainen H., Vuorio E. Localization of the expression of types I, III, and IV collagen, TGF-beta 1 and c-fos genes in developing human calvarial bones. Dev Biol. 1988 Nov;130(1):324–334. doi: 10.1016/0012-1606(88)90438-1. [DOI] [PubMed] [Google Scholar]
- Sandberg M., Vuorio E. Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization. J Cell Biol. 1987 Apr;104(4):1077–1084. doi: 10.1083/jcb.104.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields S. E., Ogilvie D. J., McKinnell R. G., Tarin D. Degradation of basement membrane collagens by metalloproteases released by human, murine and amphibian tumours. J Pathol. 1984 Jul;143(3):193–197. doi: 10.1002/path.1711430307. [DOI] [PubMed] [Google Scholar]
- Sieber S. C., Lopez V., Rosai J., Buckley P. J. Primary tumor of spleen with morphologic features of malignant fibrous histiocytoma. Immunohistochemical evidence for a macrophage origin. Am J Surg Pathol. 1990 Nov;14(11):1061–1070. doi: 10.1097/00000478-199011000-00007. [DOI] [PubMed] [Google Scholar]
- Soini Y., Miettinen M. Alpha-1-antitrypsin and lysozyme. Their limited significance in fibrohistiocytic tumors. Am J Clin Pathol. 1989 May;91(5):515–521. doi: 10.1093/ajcp/91.5.515. [DOI] [PubMed] [Google Scholar]
- Soini Y., Miettinen M. Immunohistochemistry of markers of histiomonocytic cells in malignant fibrous histiocytomas. A monoclonal antibody study. Pathol Res Pract. 1990 Dec;186(6):759–767. doi: 10.1016/S0344-0338(11)80267-0. [DOI] [PubMed] [Google Scholar]
- Soini Y., Miettinen M. Widespread immunoreactivity for alpha-1-antichymotrypsin in different types of tumors. Am J Clin Pathol. 1988 Aug;90(2):131–136. doi: 10.1093/ajcp/90.2.131. [DOI] [PubMed] [Google Scholar]
- Strauchen J. A., Dimitriu-Bona A. Malignant fibrous histiocytoma. Expression of monocyte/macrophage differentiation antigens detected with monoclonal antibodies. Am J Pathol. 1986 Aug;124(2):303–309. [PMC free article] [PubMed] [Google Scholar]
- Syrjänen S., Syrjänen K. An improved in situ DNA hybridization protocol for detection of human papillomavirus (HPV) DNA sequences in paraffin-embedded biopsies. J Virol Methods. 1986 Nov;14(3-4):293–304. doi: 10.1016/0166-0934(86)90031-5. [DOI] [PubMed] [Google Scholar]
- Taxy J. B., Battifora H. Malignant fibrous histiocytoma. An electron microscopic study. Cancer. 1977 Jul;40(1):254–267. doi: 10.1002/1097-0142(197707)40:1<254::aid-cncr2820400138>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
- Wood G. S., Beckstead J. H., Turner R. R., Hendrickson M. R., Kempson R. L., Warnke R. A. Malignant fibrous histiocytoma tumor cells resemble fibroblasts. Am J Surg Pathol. 1986 May;10(5):323–335. doi: 10.1097/00000478-198605000-00004. [DOI] [PubMed] [Google Scholar]
- Woodley D. T., Stanley J. R., Reese M. J., O'Keefe E. J. Human dermal fibroblasts synthesize laminin. J Invest Dermatol. 1988 May;90(5):679–683. doi: 10.1111/1523-1747.ep12560880. [DOI] [PubMed] [Google Scholar]



