Abstract
Immune regulation of measles virus (MV) expression was studied in a persistently infected mouse macrophage cell line. Synthesis of both membrane-associated and internal MV antigens was suppressed when infected macrophages were treated with polyclonal rabbit anti-MV antibody that was specific for MV proteins. Persistently infected macrophages were treated for 3, 5, or 7 days with increasing doses of anti-MV antibody. All MV proteins were down-regulated 2 days after treatment was terminated. One week after treatment was terminated, down-regulation was still evident but to a lesser degree. MV protein synthesis was suppressed whether or not complement components were inactivated by heating all serum supplements and antibodies. However, when complement was active, cell lysis accounted for some of the reduced MV protein synthesis. When lytic destruction of infected cells by antibody and complement was prevented by inactivation of complement, antibody alone reduced the cellular synthesis of viral proteins by noncytolytic mechanisms. The absence of cell death in the absence of complement was confirmed by the lack of 51Cr release from labeled cells, the lack of reduction in cell number, and the lack of a decrease in total protein synthesis when radiolabeled infected cells were treated with antibody. It is noteworthy that low doses of antibody were optimal for suppression in the longer-term experiments and did not cause lysis, even in the presence of active complement. Since infected macrophages disseminate virus in measles infection, noncytolytic regulation of these cells by antibody may supplement viral clearance by cytolytic T cells and other immune mechanisms.
Full Text
The Full Text of this article is available as a PDF (260.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexandersen S., Larsen S., Cohn A., Uttenthal A., Race R. E., Aasted B., Hansen M., Bloom M. E. Passive transfer of antiviral antibodies restricts replication of Aleutian mink disease parvovirus in vivo. J Virol. 1989 Jan;63(1):9–17. doi: 10.1128/jvi.63.1.9-17.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldridge J. R., Buchmeier M. J. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J Virol. 1992 Jul;66(7):4252–4257. doi: 10.1128/jvi.66.7.4252-4257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee A. K. Transcription and replication of rhabdoviruses. Microbiol Rev. 1987 Mar;51(1):66–87. doi: 10.1128/mr.51.1.66-87.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bankamp B., Brinckmann U. G., Reich A., Niewiesk S., ter Meulen V., Liebert U. G. Measles virus nucleocapsid protein protects rats from encephalitis. J Virol. 1991 Apr;65(4):1695–1700. doi: 10.1128/jvi.65.4.1695-1700.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett P. N., Koschel K., Carter M., ter Meulen V. Effect of measles virus antibodies on a measles SSPE virus persistently infected C6 rat glioma cell line. J Gen Virol. 1985 Jul;66(Pt 7):1411–1421. doi: 10.1099/0022-1317-66-7-1411. [DOI] [PubMed] [Google Scholar]
- Battegay M., Kyburz D., Hengartner H., Zinkernagel R. M. Enhancement of disease by neutralizing antiviral antibodies in the absence of primed antiviral cytotoxic T cells. Eur J Immunol. 1993 Dec;23(12):3236–3241. doi: 10.1002/eji.1830231229. [DOI] [PubMed] [Google Scholar]
- Brunner K. T., Mauel J., Cerottini J. C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968 Feb;14(2):181–196. [PMC free article] [PubMed] [Google Scholar]
- Cerny A., Sutter S., Bazin H., Hengartner H., Zinkernagel R. M. Clearance of lymphocytic choriomeningitis virus in antibody- and B-cell-deprived mice. J Virol. 1988 May;62(5):1803–1807. doi: 10.1128/jvi.62.5.1803-1807.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drillien R., Spehner D., Kirn A., Giraudon P., Buckland R., Wild F., Lecocq J. P. Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1252–1256. doi: 10.1073/pnas.85.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esolen L. M., Ward B. J., Moench T. R., Griffin D. E. Infection of monocytes during measles. J Infect Dis. 1993 Jul;168(1):47–52. doi: 10.1093/infdis/168.1.47. [DOI] [PubMed] [Google Scholar]
- Fujinami R. S., Norrby E., Oldstone M. B. Antigenic modulation induced by monoclonal antibodies: antibodies to measles virus hemagglutinin alters expression of other viral polypeptides in infected cells. J Immunol. 1984 May;132(5):2618–2621. [PubMed] [Google Scholar]
- Fujinami R. S., Oldstone M. B. Alterations in expression of measles virus polypeptides by antibody: molecular events in antibody-induced antigenic modulation. J Immunol. 1980 Jul;125(1):78–85. [PubMed] [Google Scholar]
- Fujinami R. S., Rosenthal A., Lampert P. W., Zurbriggen A., Yamada M. Survival of athymic (nu/nu) mice after Theiler's murine encephalomyelitis virus infection by passive administration of neutralizing monoclonal antibody. J Virol. 1989 May;63(5):2081–2087. doi: 10.1128/jvi.63.5.2081-2087.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giraudon P., Wild T. F. Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology. 1985 Jul 15;144(1):46–58. doi: 10.1016/0042-6822(85)90303-4. [DOI] [PubMed] [Google Scholar]
- Goldman J. N., Goldman M. B. Antibody-induced suppression of the fifth component of complement in mice. J Immunol. 1978 Feb;120(2):400–407. [PubMed] [Google Scholar]
- Goldman J. N., O'Rourke K. S., Goldman M. B. Antibody-induced suppression and postsuppression stimulation of complement in vitro. III. Long-term C4 suppression is actively maintained by a soluble suppressor factor (FsC4). Cell Immunol. 1985 Nov;96(1):26–37. doi: 10.1016/0008-8749(85)90337-5. [DOI] [PubMed] [Google Scholar]
- Goldman J. N., O'Rourke K. S., McMannis J. D., Goldman M. B. Effects of anti-C4 antibody on complement production by splenic and peritoneal macrophages. Complement. 1988;5(1):13–26. doi: 10.1159/000463027. [DOI] [PubMed] [Google Scholar]
- Goldman M. B., Becker D. S., O'Rourke K. S., Goldman J. N. Enhancement by cyclic AMP of antibody-induced suppression of the fourth component of complement. J Immunol. 1985 Oct;135(4):2701–2706. [PubMed] [Google Scholar]
- Goldman M. B., French D. L., Goldman J. N. Cell-mediated suppression of the fifth component of complement in mice. J Immunol. 1979 Jan;122(1):246–252. [PubMed] [Google Scholar]
- Goldman M. B., Knovich M. A., Goldman J. N. Immunologic control of C3 gene expression in tissue macrophages. J Immunol. 1991 Dec 15;147(12):4248–4255. [PubMed] [Google Scholar]
- Goldman M. B., Knovich M. A., Goldman J. N. T lymphocytes mediate immunologic control of C3 gene expression. Eur J Immunol. 1992 Dec;22(12):3103–3109. doi: 10.1002/eji.1830221212. [DOI] [PubMed] [Google Scholar]
- Goldman M. B., O'Rourke K. S., Becker D. S., Goldman J. N. Antibody-induced suppression and postsuppression stimulation of complement in vitro. II. Intracellular and extracellular changes in C4 during long-term C4 suppression in guinea pig splenic fragments. J Immunol. 1985 May;134(5):3298–3306. [PubMed] [Google Scholar]
- Goldman M. B., O'Rourke K. S., Goldman J. N. Antibody-induced suppression and postsuppression stimulation of complement in vitro. 1. Effects of anti-c4 on cultured guinea pig peritoneal cells. Cell Immunol. 1982 Jun;70(1):118–131. doi: 10.1016/0008-8749(82)90138-1. [DOI] [PubMed] [Google Scholar]
- Hohdatsu T., Pu R., Torres B. A., Trujillo S., Gardner M. B., Yamamoto J. K. Passive antibody protection of cats against feline immunodeficiency virus infection. J Virol. 1993 Apr;67(4):2344–2348. doi: 10.1128/jvi.67.4.2344-2348.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joly E., Mucke L., Oldstone M. B. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991 Sep 13;253(5025):1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
- Levine B., Griffin D. E. Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol. 1992 Nov;66(11):6429–6435. doi: 10.1128/jvi.66.11.6429-6435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991 Nov 8;254(5033):856–860. doi: 10.1126/science.1658936. [DOI] [PubMed] [Google Scholar]
- Liebert U. G., Schneider-Schaulies S., Baczko K., ter Meulen V. Antibody-induced restriction of viral gene expression in measles encephalitis in rats. J Virol. 1990 Feb;64(2):706–713. doi: 10.1128/jvi.64.2.706-713.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEntee M. F., Zink M. C., Anderson M. G., Farzadegan H., Adams R. J., Kent K. A., Stott E. J., Clements J. E., Narayan O. Neutralizing antibodies modulate replication of simian immunodeficiency virus SIVmac in primary macaque macrophages. J Virol. 1992 Oct;66(10):6200–6203. doi: 10.1128/jvi.66.10.6200-6203.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMannis J. D., Goldman M. B., Goldman J. N. The role of lymphoid cells in antibody-induced suppression of the fourth component of guinea pig complement. Cell Immunol. 1987 Apr 15;106(1):22–32. doi: 10.1016/0008-8749(87)90146-8. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Robinson W. E., Jr, Hirsch V. M., Modliszewski A., Mitchell W. M., Johnson P. R. Antibody-dependent enhancement of simian immunodeficiency virus (SIV) infection in vitro by plasma from SIV-infected rhesus macaques. J Virol. 1990 Jan;64(1):113–119. doi: 10.1128/jvi.64.1.113-119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldstone M. B., Tishon A., Schwimmbeck P. L., Shyp S., Lewicki H., Dyrberg T. Cytotoxic T lymphocytes do not control lymphocytic choriomeningitis virus infection of BB diabetes-prone rats. J Gen Virol. 1990 Apr;71(Pt 4):785–791. doi: 10.1099/0022-1317-71-4-785. [DOI] [PubMed] [Google Scholar]
- Perry L. L., Lodmell D. L. Role of CD4+ and CD8+ T cells in murine resistance to street rabies virus. J Virol. 1991 Jul;65(7):3429–3434. doi: 10.1128/jvi.65.7.3429-3434.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider-Schaulies S., Liebert U. G., Baczko K., ter Meulen V. Restricted expression of measles virus in primary rat astroglial cells. Virology. 1990 Aug;177(2):802–806. doi: 10.1016/0042-6822(90)90553-4. [DOI] [PubMed] [Google Scholar]
- Schneider-Schaulies S., Liebert U. G., Segev Y., Rager-Zisman B., Wolfson M., ter Meulen V. Antibody-dependent transcriptional regulation of measles virus in persistently infected neural cells. J Virol. 1992 Sep;66(9):5534–5541. doi: 10.1128/jvi.66.9.5534-5541.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segev Y., Rager-Zisman B., Isakov N., Schneider-Schaulies S., ter Meulen V., Udem S., Segal S., Wolfson M. Reversal of the measles virus-mediated increase of phosphorylating activity in persistently infected mouse neuroblastoma cells by anti-measles virus antibodies. J Gen Virol. 1994 Apr;75(Pt 4):819–827. doi: 10.1099/0022-1317-75-4-819. [DOI] [PubMed] [Google Scholar]
- Staats H. F., Oakes J. E., Lausch R. N. Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo GM1+ cells. J Virol. 1991 Nov;65(11):6008–6014. doi: 10.1128/jvi.65.11.6008-6014.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suryanarayana K., Baczko K., ter Meulen V., Wagner R. R. Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol. 1994 Mar;68(3):1532–1543. doi: 10.1128/jvi.68.3.1532-1543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolskaya E. A., Ivannikova T. A., Kolesnikova M. S., Drozdov S. G., Agol V. I. Postinfection treatment with antiviral serum results in survival of neural cells productively infected with virulent poliovirus. J Virol. 1992 Aug;66(8):5152–5156. doi: 10.1128/jvi.66.8.5152-5156.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler K. L., Mann M. A., Fields B. N., Virgin H. W., 4th Protective anti-reovirus monoclonal antibodies and their effects on viral pathogenesis. J Virol. 1993 Jun;67(6):3446–3453. doi: 10.1128/jvi.67.6.3446-3453.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright K. E., Buchmeier M. J. Antiviral antibodies attenuate T-cell-mediated immunopathology following acute lymphocytic choriomeningitis virus infection. J Virol. 1991 Jun;65(6):3001–3006. doi: 10.1128/jvi.65.6.3001-3006.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinnheimer-Dreikorn J., Koschel K. P. Antigenic modulation of measles subacute sclerosing panencephalitis virus in a persistently infected rat glioma cell line by monoclonal anti-haemagglutinin antibodies. J Gen Virol. 1990 Jun;71(Pt 6):1391–1394. doi: 10.1099/0022-1317-71-6-1391. [DOI] [PubMed] [Google Scholar]