Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1992 Apr;140(4):795–807.

Mature eosinophils stimulated to develop in human-cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. II. Vesicular transport of specific granule matrix peroxidase, a mechanism for effecting piecemeal degranulation.

A M Dvorak 1, S J Ackerman 1, T Furitsu 1, P Estrella 1, L Letourneau 1, T Ishizaka 1
PMCID: PMC1886371  PMID: 1562046

Abstract

The mechanism of piecemeal degranulation by human eosinophils was investigated. Mature eosinophils that developed in rhIL-5-containing conditioned media from cultured human cord blood mononuclear cells were prepared for ultrastructural studies using a combined technique to image eosinophil peroxidase by cytochemistry in the same sections on which postembedding immunogold was used to demonstrate Charcot-Leyden crystal protein. Vesicular transport of eosinophil peroxidase from the specific granule matrix compartment to the cell surface was associated with piecemeal degranulation. This process involved budding of eosinophil peroxidase-loaded vesicles and tubules from specific granules. Some eosinophil peroxidase that was released from eosinophils remained bound to the cell surface; some was free among the cultured cells. Macrophages and basophils bound the released eosinophil peroxidase to their plasma membranes, internalized it in endocytotic vesicles, and stored it in their respective phagolysosomes and secretory granules. Charcot-Leyden crystal protein was diffusely present in the nucleus and cytoplasm of IL-5-stimulated mature eosinophils. Extensive amounts were generally present in granule-poor and subplasma membrane areas of the cytoplasm in contrast to eosinophil peroxidase, which was secreted and bound to the external surface of eosinophil plasma membranes. These studies establish vesicular transport as a mechanism for emptying the specific eosinophil granule matrix compartment during IL-5-associated piecemeal degranulation.

Full text

PDF
795

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Ghazaleh R. I., Fujisawa T., Mestecky J., Kyle R. A., Gleich G. J. IgA-induced eosinophil degranulation. J Immunol. 1989 Apr 1;142(7):2393–2400. [PubMed] [Google Scholar]
  2. Ackerman S. J., Gleich G. J., Loegering D. A., Richardson B. A., Butterworth A. E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg. 1985 Jul;34(4):735–745. doi: 10.4269/ajtmh.1985.34.735. [DOI] [PubMed] [Google Scholar]
  3. Ackerman S. J., Weil G. J., Gleich G. J. Formation of Charcot-Leyden crystals by human basophils. J Exp Med. 1982 Jun 1;155(6):1597–1609. doi: 10.1084/jem.155.6.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol. 1970 Apr;45(1):54–73. doi: 10.1083/jcb.45.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem. 1983 Jan;31(1):101–109. doi: 10.1177/31.1.6187796. [DOI] [PubMed] [Google Scholar]
  6. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  7. Carlson M. G., Peterson C. G., Venge P. Human eosinophil peroxidase: purification and characterization. J Immunol. 1985 Mar;134(3):1875–1879. [PubMed] [Google Scholar]
  8. Carlson M. G., Peterson C. G., Venge P. Human eosinophil peroxidase: purification and characterization. J Immunol. 1985 Mar;134(3):1875–1879. [PubMed] [Google Scholar]
  9. Chihara J., Plumas J., Gruart V., Tavernier J., Prin L., Capron A., Capron M. Characterization of a receptor for interleukin 5 on human eosinophils: variable expression and induction by granulocyte/macrophage colony-stimulating factor. J Exp Med. 1990 Nov 1;172(5):1347–1351. doi: 10.1084/jem.172.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chihara J., Plumas J., Gruart V., Tavernier J., Prin L., Capron A., Capron M. Characterization of a receptor for interleukin 5 on human eosinophils: variable expression and induction by granulocyte/macrophage colony-stimulating factor. J Exp Med. 1990 Nov 1;172(5):1347–1351. doi: 10.1084/jem.172.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clutterbuck E. J., Hirst E. M., Sanderson C. J. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood. 1989 May 1;73(6):1504–1512. [PubMed] [Google Scholar]
  12. Cotran R. S., Litt M. The entry of granule-associated peroxidase into the phagocytic vacuoles of eosinophils. J Exp Med. 1969 Jun 1;129(6):1291–1306. doi: 10.1084/jem.129.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cotran R. S., Litt M. The entry of granule-associated peroxidase into the phagocytic vacuoles of eosinophils. J Exp Med. 1969 Jun 1;129(6):1291–1306. doi: 10.1084/jem.129.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davis W. B., Fells G. A., Sun X. H., Gadek J. E., Venet A., Crystal R. G. Eosinophil-mediated injury to lung parenchymal cells and interstitial matrix. A possible role for eosinophils in chronic inflammatory disorders of the lower respiratory tract. J Clin Invest. 1984 Jul;74(1):269–278. doi: 10.1172/JCI111411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dent L. A., Strath M., Mellor A. L., Sanderson C. J. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990 Nov 1;172(5):1425–1431. doi: 10.1084/jem.172.5.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dent L. A., Strath M., Mellor A. L., Sanderson C. J. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990 Nov 1;172(5):1425–1431. doi: 10.1084/jem.172.5.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dvorak A. M. Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function in disease. Immunol Ser. 1992;57:169–271. [PubMed] [Google Scholar]
  18. Dvorak A. M., Dvorak H. F., Karnovsky M. J. Uptake of horseradish peroxidase by guinea pig basophilic leukocytes. Lab Invest. 1972 Jan;26(1):27–39. [PubMed] [Google Scholar]
  19. Dvorak A. M., Furitsu T., Letourneau L., Ishizaka T., Ackerman S. J. Mature eosinophils stimulated to develop in human cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. Part I. Piecemeal degranulation of specific granules and distribution of Charcot-Leyden crystal protein. Am J Pathol. 1991 Jan;138(1):69–82. [PMC free article] [PubMed] [Google Scholar]
  20. Dvorak A. M., Hammond M. E., Morgan E., Orenstein N. S., Galli S. J., Dvorak H. F. Evidence for a vesicular transport mechanism in guinea pig basophilic leukocytes. Lab Invest. 1980 Feb;42(2):263–276. [PubMed] [Google Scholar]
  21. Dvorak A. M., Ishizaka T., Galli S. J. Ultrastructure of human basophils developing in vitro. Evidence for the acquisition of peroxidase by basophils and for different effects of human and murine growth factors on human basophil and eosinophil maturation. Lab Invest. 1985 Jul;53(1):57–71. [PubMed] [Google Scholar]
  22. Dvorak A. M., Klebanoff S. J., Henderson W. R., Monahan R. A., Pyne K., Galli S. J. Vesicular uptake of eosinophil peroxidase by guinea pig basophils and by cloned mouse mast cells and granule-containing lymphoid cells. Am J Pathol. 1985 Mar;118(3):425–438. [PMC free article] [PubMed] [Google Scholar]
  23. Dvorak A. M., Letourneau L., Weller P. F., Ackerman S. J. Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas. Lab Invest. 1990 May;62(5):608–615. [PubMed] [Google Scholar]
  24. Dvorak A. M., Saito H., Estrella P., Kissell S., Arai N., Ishizaka T. Ultrastructure of eosinophils and basophils stimulated to develop in human cord blood mononuclear cell cultures containing recombinant human interleukin-5 or interleukin-3. Lab Invest. 1989 Jul;61(1):116–132. [PubMed] [Google Scholar]
  25. Dvorak A. M., Weller P. F., Monahan-Earley R. A., Letourneau L., Ackerman S. J. Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) and peroxidase in macrophages, eosinophils, and extracellular matrix of the skin in the hypereosinophilic syndrome. Lab Invest. 1990 May;62(5):590–607. [PubMed] [Google Scholar]
  26. Fujisawa T., Abu-Ghazaleh R., Kita H., Sanderson C. J., Gleich G. J. Regulatory effect of cytokines on eosinophil degranulation. J Immunol. 1990 Jan 15;144(2):642–646. [PubMed] [Google Scholar]
  27. Fujisawa T., Abu-Ghazaleh R., Kita H., Sanderson C. J., Gleich G. J. Regulatory effect of cytokines on eosinophil degranulation. J Immunol. 1990 Jan 15;144(2):642–646. [PubMed] [Google Scholar]
  28. Fukuda T., Ackerman S. J., Reed C. E., Peters M. S., Dunnette S. L., Gleich G. J. Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol. 1985 Aug;135(2):1349–1356. [PubMed] [Google Scholar]
  29. Gruart V., Balloul J. M., Prin L., Tomassini M., Loiseau S., Capron A., Capron M. Variations in protein expression related to human eosinophil heterogeneity. J Immunol. 1989 Jun 15;142(12):4416–4421. [PubMed] [Google Scholar]
  30. Henderson W. R., Chi E. Y., Klebanoff S. J. Eosinophil peroxidase-induced mast cell secretion. J Exp Med. 1980 Aug 1;152(2):265–279. doi: 10.1084/jem.152.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Henderson W. R., Chi E. Y. Ultrastructural characterization and morphometric analysis of human eosinophil degranulation. J Cell Sci. 1985 Feb;73:33–48. doi: 10.1242/jcs.73.1.33. [DOI] [PubMed] [Google Scholar]
  32. Henderson W. R., Jong E. C., Klebanoff S. J. Binding of eosinophil peroxidase to mast cell granules with retention of peroxidatic activity. J Immunol. 1980 Mar;124(3):1383–1388. [PubMed] [Google Scholar]
  33. Ishizaka T., Saito H., Hatake K., Dvorak A. M., Leiferman K. M., Arai N., Ishizaka K. Preferential differentiation of inflammatory cells by recombinant human interleukins. Int Arch Allergy Appl Immunol. 1989;88(1-2):46–49. doi: 10.1159/000234746. [DOI] [PubMed] [Google Scholar]
  34. Jong E. C., Henderson W. R., Klebanoff S. J. Bactericidal activity of eosinophil peroxidase. J Immunol. 1980 Mar;124(3):1378–1382. [PubMed] [Google Scholar]
  35. Jong E. C., Klebanoff S. J. Eosinophil-mediated mammalian tumor cell cytotoxicity: role of the peroxidase system. J Immunol. 1980 Apr;124(4):1949–1953. [PubMed] [Google Scholar]
  36. Khalife J., Capron M., Cesbron J. Y., Tai P. C., Taelman H., Prin L., Capron A. Role of specific IgE antibodies in peroxidase (EPO) release from human eosinophils. J Immunol. 1986 Sep 1;137(5):1659–1664. [PubMed] [Google Scholar]
  37. Khalife J., Capron M., Grzych J. M., Bazin H., Capron A. Extracellular release of rat eosinophil peroxidase (EPO) I. Role of anaphylactic immunoglobulins. J Immunol. 1985 Mar;134(3):1968–1974. [PubMed] [Google Scholar]
  38. Klebanoff S. J., Agosti J. M., Jörg A., Waltersdorph A. M. Comparative toxicity of the horse eosinophil peroxidase-H2O2-halide system and granule basic proteins. J Immunol. 1989 Jul 1;143(1):239–244. [PubMed] [Google Scholar]
  39. Lopez A. F., Sanderson C. J., Gamble J. R., Campbell H. D., Young I. G., Vadas M. A. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med. 1988 Jan 1;167(1):219–224. doi: 10.1084/jem.167.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lopez A. F., Sanderson C. J., Gamble J. R., Campbell H. D., Young I. G., Vadas M. A. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med. 1988 Jan 1;167(1):219–224. doi: 10.1084/jem.167.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Migler R., DeChatelet L. R., Bass D. A. Human eosinophilic peroxidase: role in bactericidal activity. Blood. 1978 Mar;51(3):445–456. [PubMed] [Google Scholar]
  42. Nogueira N. M., Klebanoff S. J., Cohn Z. A. T. cruzi: sensitization to macrophage killing by eosinophil peroxidase. J Immunol. 1982 Apr;128(4):1705–1708. [PubMed] [Google Scholar]
  43. Ogawa M., Nakahata T., Leary A. G., Sterk A. R., Ishizaka K., Ishizaka T. Suspension culture of human mast cells/basophils from umbilical cord blood mononuclear cells. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4494–4498. doi: 10.1073/pnas.80.14.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Olsen E. G., Spry C. J. Relation between eosinophilia and endomyocardial disease. Prog Cardiovasc Dis. 1985 Jan-Feb;27(4):241–254. doi: 10.1016/0033-0620(85)90008-8. [DOI] [PubMed] [Google Scholar]
  45. Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J. 1983 Mar 1;209(3):781–787. doi: 10.1042/bj2090781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J. 1983 Mar 1;209(3):781–787. doi: 10.1042/bj2090781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Owen W. F., Rothenberg M. E., Petersen J., Weller P. F., Silberstein D., Sheffer A. L., Stevens R. L., Soberman R. J., Austen K. F. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med. 1989 Jul 1;170(1):343–348. doi: 10.1084/jem.170.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Owen W. F., Rothenberg M. E., Petersen J., Weller P. F., Silberstein D., Sheffer A. L., Stevens R. L., Soberman R. J., Austen K. F. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med. 1989 Jul 1;170(1):343–348. doi: 10.1084/jem.170.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Peters M. S., Rodriguez M., Gleich G. J. Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest. 1986 Jun;54(6):656–662. [PubMed] [Google Scholar]
  50. Rothenberg M. E., Petersen J., Stevens R. L., Silberstein D. S., McKenzie D. T., Austen K. F., Owen W. F., Jr IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989 Oct 1;143(7):2311–2316. [PubMed] [Google Scholar]
  51. Rothenberg M. E., Petersen J., Stevens R. L., Silberstein D. S., McKenzie D. T., Austen K. F., Owen W. F., Jr IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989 Oct 1;143(7):2311–2316. [PubMed] [Google Scholar]
  52. Saito H., Hatake K., Dvorak A. M., Leiferman K. M., Donnenberg A. D., Arai N., Ishizaka K., Ishizaka T. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2288–2292. doi: 10.1073/pnas.85.7.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sakamaki K., Tomonaga M., Tsukui K., Nagata S. Molecular cloning and characterization of a chromosomal gene for human eosinophil peroxidase. J Biol Chem. 1989 Oct 5;264(28):16828–16836. [PubMed] [Google Scholar]
  54. Sakamaki K., Tomonaga M., Tsukui K., Nagata S. Molecular cloning and characterization of a chromosomal gene for human eosinophil peroxidase. J Biol Chem. 1989 Oct 5;264(28):16828–16836. [PubMed] [Google Scholar]
  55. Samoszuk M. K., Nathwani B. N., Lukes R. J. Extensive deposition of eosinophil peroxidase in Hodgkin's and non-Hodgkin's lymphomas. Am J Pathol. 1986 Dec;125(3):426–429. [PMC free article] [PubMed] [Google Scholar]
  56. Slungaard A., Mahoney J. R., Jr Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis. J Exp Med. 1991 Jan 1;173(1):117–126. doi: 10.1084/jem.173.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tai P. C., Spry C. J. The mechanisms which produce vacuolated and degranulated eosinophils. Br J Haematol. 1981 Oct;49(2):219–226. doi: 10.1111/j.1365-2141.1981.tb07218.x. [DOI] [PubMed] [Google Scholar]
  58. Ten R. M., Pease L. R., McKean D. J., Bell M. P., Gleich G. J. Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med. 1989 May 1;169(5):1757–1769. doi: 10.1084/jem.169.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ten R. M., Pease L. R., McKean D. J., Bell M. P., Gleich G. J. Molecular cloning of the human eosinophil peroxidase. Evidence for the existence of a peroxidase multigene family. J Exp Med. 1989 May 1;169(5):1757–1769. doi: 10.1084/jem.169.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Walsh G. M., Hartnell A., Moqbel R., Cromwell O., Nagy L., Bradley B., Furitsu T., Ishizaka T., Kay A. B. Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells. Blood. 1990 Jul 1;76(1):105–111. [PubMed] [Google Scholar]
  61. Walsh G. M., Hartnell A., Moqbel R., Cromwell O., Nagy L., Bradley B., Furitsu T., Ishizaka T., Kay A. B. Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells. Blood. 1990 Jul 1;76(1):105–111. [PubMed] [Google Scholar]
  62. Weller P. F., Ackerman S. J., Smith J. A. Eosinophil granule cationic proteins: major basic protein is distinct from the smaller subunit of eosinophil peroxidase. J Leukoc Biol. 1988 Jan;43(1):1–4. doi: 10.1002/jlb.43.1.1. [DOI] [PubMed] [Google Scholar]
  63. Weller P. F., Ackerman S. J., Smith J. A. Eosinophil granule cationic proteins: major basic protein is distinct from the smaller subunit of eosinophil peroxidase. J Leukoc Biol. 1988 Jan;43(1):1–4. doi: 10.1002/jlb.43.1.1. [DOI] [PubMed] [Google Scholar]
  64. Yokota T., Coffman R. L., Hagiwara H., Rennick D. M., Takebe Y., Yokota K., Gemmell L., Shrader B., Yang G., Meyerson P. Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: relationship to interleukin 5. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7388–7392. doi: 10.1073/pnas.84.21.7388. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES