Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1991 Jun;138(6):1451–1459.

CD45 epitope mapping of human CD1a+ dendritic cells and peripheral blood dendritic cells.

G S Wood 1, P S Freudenthal 1, A Edinger 1, R M Steinman 1, R A Warnke 1
PMCID: PMC1886385  PMID: 1711291

Abstract

The authors studied the pattern of leukocyte common antigen (CD45) epitope expression on dendritic cells in sections of human epidermis, tonsillar epithelium, dermatopathic lymph nodes, and in isolates from blood. The monoclonal antibodies (MAb) used were specific for all known CD45 epitopes, including the seven different CD45 common epitopes as well as the four known CD45R epitopes (two CD45RA, one CD45RB, and one CD45RO). Dendritic cells in all sites were uniformly reactive for the CD45 common epitopes tested except 2B11, which may recognize a CD45R rather than CD45 epitope. By single-label immunoperoxidase and double-label immunofluorescence epitope mapping of CD1a+ dendritic cells in tissue sections, it was generally difficult or impossible to detect expression of CD45RA, CD45RB, CD45RO, or 2B11. In blood dendritic cells, however, low levels of these CD45R epitopes were detected consistently using single-label immunoperoxidase staining of cytocentrifuge preparations. Monocytes were similar to blood dendritic cells except that the staining with MAb to CD45RO and 2B11 was slightly stronger. The authors conclude that dendritic cells differ from most subpopulations of lymphocytes in that CD45 common epitopes are readily detectable but the existing RA, RB, and RO epitopes are either undetectable or expressed at relatively low levels. These studies raise the possibility that CD1a+ dendritic cells may express a novel dominant CD45 isoform.

Full text

PDF
1451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay A. N., Jackson D. I., Willis A. C., Williams A. F. Lymphocyte specific heterogeneity in the rat leucocyte common antigen (T200) is due to differences in polypeptide sequences near the NH2-terminus. EMBO J. 1987 May;6(5):1259–1264. doi: 10.1002/j.1460-2075.1987.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckstead J. H., Wood G. S., Turner R. R. Histiocytosis X cells and Langerhans cells: enzyme histochemical and immunologic similarities. Hum Pathol. 1984 Sep;15(9):826–833. doi: 10.1016/s0046-8177(84)80143-4. [DOI] [PubMed] [Google Scholar]
  3. Charbonneau H., Tonks N. K., Walsh K. A., Fischer E. H. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7182–7186. doi: 10.1073/pnas.85.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Panfilis G., Manara G. C., Ferrari C., Torresani C., Rowden G. Subsets of keratinocytes and Langerhans' cells express epitopes associated with suppressor-inducer capabilities in resting normal human epidermis. Immunology. 1990 Apr;69(4):622–625. [PMC free article] [PubMed] [Google Scholar]
  5. Foster C. A., Yokozeki H., Rappersberger K., Koning F., Volc-Platzer B., Rieger A., Coligan J. E., Wolff K., Stingl G. Human epidermal T cells predominantly belong to the lineage expressing alpha/beta T cell receptor. J Exp Med. 1990 Apr 1;171(4):997–1013. doi: 10.1084/jem.171.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall L. R., Streuli M., Schlossman S. F., Saito H. Complete exon-intron organization of the human leukocyte common antigen (CD45) gene. J Immunol. 1988 Oct 15;141(8):2781–2787. [PubMed] [Google Scholar]
  7. Klinkert W. E., LaBadie J. H., Bowers W. E. Accessory and stimulating properties of dendritic cells and macrophages isolated from various rat tissues. J Exp Med. 1982 Jul 1;156(1):1–19. doi: 10.1084/jem.156.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ralph S. J., Thomas M. L., Morton C. C., Trowbridge I. S. Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J. 1987 May;6(5):1251–1257. doi: 10.1002/j.1460-2075.1987.tb02361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Saga Y., Tung J. S., Shen F. W., Boyse E. A. Sequences of Ly-5 cDNA: isoform-related diversity of Ly-5 mRNA. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6940–6944. doi: 10.1073/pnas.83.18.6940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  11. Schuler G., Steinman R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985 Mar 1;161(3):526–546. doi: 10.1084/jem.161.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shackelford D. A., Trowbridge I. S. Identification of lymphocyte integral membrane proteins as substrates for protein kinase C. Phosphorylation of the interleukin-2 receptor, class I HLA antigens, and T200 glycoprotein. J Biol Chem. 1986 Jun 25;261(18):8334–8341. [PubMed] [Google Scholar]
  13. Shen F. W., Saga Y., Litman G., Freeman G., Tung J. S., Cantor H., Boyse E. A. Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7360–7363. doi: 10.1073/pnas.82.21.7360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  15. Steinman R. M., Kaplan G., Witmer M. D., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J Exp Med. 1979 Jan 1;149(1):1–16. doi: 10.1084/jem.149.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Streuli M., Hall L. R., Saga Y., Schlossman S. F., Saito H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J Exp Med. 1987 Nov 1;166(5):1548–1566. doi: 10.1084/jem.166.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Streuli M., Krueger N. X., Tsai A. Y., Saito H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8698–8702. doi: 10.1073/pnas.86.22.8698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Teunissen M. B., Wormmeester J., Krieg S. R., Peters P. J., Vogels I. M., Kapsenberg M. L., Bos J. D. Human epidermal Langerhans cells undergo profound morphologic and phenotypical changes during in vitro culture. J Invest Dermatol. 1990 Feb;94(2):166–173. doi: 10.1111/1523-1747.ep12874439. [DOI] [PubMed] [Google Scholar]
  19. Thomas M. L., Barclay A. N., Gagnon J., Williams A. F. Evidence from cDNA clones that the rat leukocyte-common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80,000 Mr. Cell. 1985 May;41(1):83–93. doi: 10.1016/0092-8674(85)90063-7. [DOI] [PubMed] [Google Scholar]
  20. Tonks N. K., Diltz C. D., Fischer E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988 May 15;263(14):6731–6737. [PubMed] [Google Scholar]
  21. Turner R. R., Wood G. S., Beckstead J. H., Colby T. V., Horning S. J., Warnke R. A. Histiocytic malignancies. Morphologic, immunologic, and enzymatic heterogeneity. Am J Surg Pathol. 1984 Jul;8(7):485–500. [PubMed] [Google Scholar]
  22. Van Voorhis W. C., Witmer M. D., Steinman R. M. The phenotype of dendritic cells and macrophages. Fed Proc. 1983 Nov;42(14):3114–3118. [PubMed] [Google Scholar]
  23. Warnke R. A., Gatter K. C., Falini B., Hildreth P., Woolston R. E., Pulford K., Cordell J. L., Cohen B., De Wolf-Peeters C., Mason D. Y. Diagnosis of human lymphoma with monoclonal antileukocyte antibodies. N Engl J Med. 1983 Nov 24;309(21):1275–1281. doi: 10.1056/NEJM198311243092102. [DOI] [PubMed] [Google Scholar]
  24. Weiss L. M., Beckstead J. H., Warnke R. A., Wood G. S. Leu-6-expressing cells in lymph nodes: dendritic cells phenotypically similar to interdigitating cells. Hum Pathol. 1986 Feb;17(2):179–184. doi: 10.1016/s0046-8177(86)80291-x. [DOI] [PubMed] [Google Scholar]
  25. Wood C., Wood G. S., Deneau D. G., Oseroff A., Beckstead J. H., Malin J. Malignant histiocytosis X. Report of a rapidly fatal case in an elderly man. Cancer. 1984 Jul 15;54(2):347–352. doi: 10.1002/1097-0142(19840715)54:2<347::aid-cncr2820540228>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  26. Wood G. S., Deneau D. G., Miller R. A., Levy R., Hoppe R. T., Warnke R. A. Subtypes of cutaneous T-cell lymphoma defined by expression of leu-1 and Ia. Blood. 1982 May;59(5):876–882. [PubMed] [Google Scholar]
  27. Wood G. S., Hu C. H., Beckstead J. H., Turner R. R., Winkelmann R. K. The indeterminate cell proliferative disorder: report of a case manifesting as an unusual cutaneous histiocytosis. J Dermatol Surg Oncol. 1985 Nov;11(11):1111–1119. doi: 10.1111/j.1524-4725.1985.tb01399.x. [DOI] [PubMed] [Google Scholar]
  28. Wood G. S., Link M., Warnke R. A., Dilley J., Levy R. Pan-leukocyte monoclonal antibody L3B12. Characterization and application to research and diagnostic problems. Am J Clin Pathol. 1984 Feb;81(2):176–183. doi: 10.1093/ajcp/81.2.176. [DOI] [PubMed] [Google Scholar]
  29. Wood G. S., Morhenn V. B., Butcher E. C., Kosek J. Langerhans cells react with pan-leukocyte monoclonal antibody: ultrastructural documentation using a live cell suspension immunoperoxidase technique. J Invest Dermatol. 1984 Apr;82(4):322–325. doi: 10.1111/1523-1747.ep12260618. [DOI] [PubMed] [Google Scholar]
  30. Wood G. S., Warnke R. A. The immunologic phenotyping of bone marrow biopsies and aspirates: frozen section techniques. Blood. 1982 May;59(5):913–922. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES