Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1992 Aug;141(2):377–388.

Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II.

E J Mackie 1, T Scott-Burden 1, A W Hahn 1, F Kern 1, J Bernhardt 1, S Regenass 1, A Weller 1, F R Bühler 1
PMCID: PMC1886597  PMID: 1379781

Abstract

The extracellular matrix glycoprotein tenascin is associated with remodeling events in many embryonic and pathologic tissues. The expression of tenascin has been investigated by immunohistochemistry in blood vessels of Wistar-Kyoto (normotensive) and spontaneously hypertensive rats. Weak tenascin staining was present throughout the tunica media of large and small arteries from normotensive animals; strong staining was only detectable at branching sites. In arteries from hypertensive animals, foci of strong tenascin staining were scattered throughout the tunica media. The expression of tenascin mRNA and protein by rat aortic smooth muscle cells cultured in serum-free medium was induced by the vasoconstrictor peptide angiotensin II. Transforming growth factor-beta and platelet-derived growth factor also stimulated tenascin mRNA expression. Vascular smooth muscle cells attached specifically to a substratum of tenascin, but remained rounded. Thus, increased focal tenascin expression by vascular smooth muscle cells is associated with hypertension, and may mediate angiotensin II-induced changes in vascular structure in hypertension.

Full text

PDF
377

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baley P., Lützelschwab I., Scott-Burden T., Küng W., Eppenberger U. Modulation of extracellular-matrix synthesized by cultured stromal cells from normal human breast tissue by epidermal growth factor. J Cell Biochem. 1990 Jun;43(2):111–125. doi: 10.1002/jcb.240430203. [DOI] [PubMed] [Google Scholar]
  2. Battegay E. J., Raines E. W., Seifert R. A., Bowen-Pope D. F., Ross R. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990 Nov 2;63(3):515–524. doi: 10.1016/0092-8674(90)90448-n. [DOI] [PubMed] [Google Scholar]
  3. Bourdon M. A., Wikstrand C. J., Furthmayr H., Matthews T. J., Bigner D. D. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res. 1983 Jun;43(6):2796–2805. [PubMed] [Google Scholar]
  4. Chiquet-Ehrismann R., Kalla P., Pearson C. A., Beck K., Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988 May 6;53(3):383–390. doi: 10.1016/0092-8674(88)90158-4. [DOI] [PubMed] [Google Scholar]
  5. Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
  6. Chiquet M., Fambrough D. M. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J Cell Biol. 1984 Jun;98(6):1926–1936. doi: 10.1083/jcb.98.6.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiquet M., Fambrough D. M. Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J Cell Biol. 1984 Jun;98(6):1937–1946. doi: 10.1083/jcb.98.6.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiquet M., Puri E. C., Turner D. C. Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum. J Biol Chem. 1979 Jun 25;254(12):5475–5482. [PubMed] [Google Scholar]
  9. Cohen M. L., Kurz K. D. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J Pharmacol Exp Ther. 1982 Jan;220(1):63–69. [PubMed] [Google Scholar]
  10. Erickson H. P., Bourdon M. A. Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu Rev Cell Biol. 1989;5:71–92. doi: 10.1146/annurev.cb.05.110189.000443. [DOI] [PubMed] [Google Scholar]
  11. Gabbiani G., Schmid E., Winter S., Chaponnier C., de Ckhastonay C., Vandekerckhove J., Weber K., Franke W. W. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci U S A. 1981 Jan;78(1):298–302. doi: 10.1073/pnas.78.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  13. Halfter W., Chiquet-Ehrismann R., Tucker R. P. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro. Dev Biol. 1989 Mar;132(1):14–25. doi: 10.1016/0012-1606(89)90200-5. [DOI] [PubMed] [Google Scholar]
  14. Hedin U., Bottger B. A., Forsberg E., Johansson S., Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol. 1988 Jul;107(1):307–319. doi: 10.1083/jcb.107.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hedin U., Thyberg J. Plasma fibronectin promotes modulation of arterial smooth-muscle cells from contractile to synthetic phenotype. Differentiation. 1987;33(3):239–246. doi: 10.1111/j.1432-0436.1987.tb01563.x. [DOI] [PubMed] [Google Scholar]
  16. Hoffman S., Crossin K. L., Edelman G. M. Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J Cell Biol. 1988 Feb;106(2):519–532. doi: 10.1083/jcb.106.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hurle J. M., Garcia-Martinez V., Ros M. A. Immunofluorescent localization of tenascin during the morphogenesis of the outflow tract of the chick embryo heart. Anat Embryol (Berl) 1990;181(2):149–155. doi: 10.1007/BF00198954. [DOI] [PubMed] [Google Scholar]
  18. Lightner V. A., Erickson H. P. Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion. J Cell Sci. 1990 Feb;95(Pt 2):263–277. doi: 10.1242/jcs.95.2.263. [DOI] [PubMed] [Google Scholar]
  19. Limas C., Westrum B., Limas C. J. The evolution of vascular changes in the spontaneously hypertensive rat. Am J Pathol. 1980 Feb;98(2):357–384. [PMC free article] [PubMed] [Google Scholar]
  20. Lukinmaa P. L., Mackie E. J., Thesleff I. Immunohistochemical localization of the matrix glycoproteins--tenascin and the ED-sequence-containing form of cellular fibronectin--in human permanent teeth and periodontal ligament. J Dent Res. 1991 Jan;70(1):19–26. doi: 10.1177/00220345910700010201. [DOI] [PubMed] [Google Scholar]
  21. Mackie E. J., Halfter W., Liverani D. Induction of tenascin in healing wounds. J Cell Biol. 1988 Dec;107(6 Pt 2):2757–2767. doi: 10.1083/jcb.107.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mackie E. J., Thesleff I., Chiquet-Ehrismann R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol. 1987 Dec;105(6 Pt 1):2569–2579. doi: 10.1083/jcb.105.6.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Majack R. A., Goodman L. V., Dixit V. M. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol. 1988 Feb;106(2):415–422. doi: 10.1083/jcb.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Majack R. A., Mildbrandt J., Dixit V. M. Induction of thrombospondin messenger RNA levels occurs as an immediate primary response to platelet-derived growth factor. J Biol Chem. 1987 Jun 25;262(18):8821–8825. [PubMed] [Google Scholar]
  25. Naftilan A. J., Zuo W. M., Inglefinger J., Ryan T. J., Jr, Pratt R. E., Dzau V. J. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest. 1991 Apr;87(4):1300–1311. doi: 10.1172/JCI115133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Owens G. K. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension. 1987 Feb;9(2):178–187. doi: 10.1161/01.hyp.9.2.178. [DOI] [PubMed] [Google Scholar]
  27. Owens G. K., Schwartz S. M., McCanna M. Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats. Hypertension. 1988 Feb;11(2):198–207. doi: 10.1161/01.hyp.11.2.198. [DOI] [PubMed] [Google Scholar]
  28. Pearson C. A., Pearson D., Shibahara S., Hofsteenge J., Chiquet-Ehrismann R. Tenascin: cDNA cloning and induction by TGF-beta. EMBO J. 1988 Oct;7(10):2977–2982. doi: 10.1002/j.1460-2075.1988.tb03160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pohla H., Kuon W., Tabaczewski P., Doerner C., Weiss E. H. Allelic variation in HLA-B and HLA-C sequences and the evolution of the HLA-B alleles. Immunogenetics. 1989;29(5):297–307. doi: 10.1007/BF00352839. [DOI] [PubMed] [Google Scholar]
  30. Schalkwijk J., Van Vlijmen I., Oosterling B., Perret C., Koopman R., Van den Born J., Mackie E. J. Tenascin expression in hyperproliferative skin diseases. Br J Dermatol. 1991 Jan;124(1):13–20. doi: 10.1111/j.1365-2133.1991.tb03276.x. [DOI] [PubMed] [Google Scholar]
  31. Schwartz S. M., Campbell G. R., Campbell J. H. Replication of smooth muscle cells in vascular disease. Circ Res. 1986 Apr;58(4):427–444. doi: 10.1161/01.res.58.4.427. [DOI] [PubMed] [Google Scholar]
  32. Scott-Burden T., Hahn A. W., Resink T. J., Bühler F. R. Modulation of extracellular matrix by angiotensin II: stimulated glycoconjugate synthesis and growth in vascular smooth muscle cells. J Cardiovasc Pharmacol. 1990;16 (Suppl 4):S36–S41. [PubMed] [Google Scholar]
  33. Scott-Burden T., Resink T. J., Baur U., Bürgin M., Bühler F. R. Epidermal growth factor responsiveness in smooth muscle cells from hypertensive and normotensive rats. Hypertension. 1989 Apr;13(4):295–304. doi: 10.1161/01.hyp.13.4.295. [DOI] [PubMed] [Google Scholar]
  34. Scott-Burden T., Resink T. J., Bürgin M., Bühler F. R. Extracellular matrix: differential influence on growth and biosynthesis patterns of vascular smooth muscle cells from SHR and WKY rats. J Cell Physiol. 1989 Nov;141(2):267–274. doi: 10.1002/jcp.1041410206. [DOI] [PubMed] [Google Scholar]
  35. Scott-Burden T., Resink T. J., Hahn A. W., Baur U., Box R. J., Bühler F. R. Induction of growth-related metabolism in human vascular smooth muscle cells by low density lipoprotein. J Biol Chem. 1989 Jul 25;264(21):12582–12589. [PubMed] [Google Scholar]
  36. Wehrle B., Chiquet M. Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro. Development. 1990 Oct;110(2):401–415. doi: 10.1242/dev.110.2.401. [DOI] [PubMed] [Google Scholar]
  37. Weller A., Beck S., Ekblom P. Amino acid sequence of mouse tenascin and differential expression of two tenascin isoforms during embryogenesis. J Cell Biol. 1991 Jan;112(2):355–362. doi: 10.1083/jcb.112.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yavin E., Gabai A., Gil S. Nerve growth factor mediates monosialoganglioside-induced release of fibronectin and J1/tenascin from C6 glioma cells. J Neurochem. 1991 Jan;56(1):105–112. doi: 10.1111/j.1471-4159.1991.tb02568.x. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES