Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1992 Dec;141(6):1279–1284.

Interleukin-8. A corneal factor that induces neovascularization.

R M Strieter 1, S L Kunkel 1, V M Elner 1, C L Martonyi 1, A E Koch 1, P J Polverini 1, S G Elner 1
PMCID: PMC1886757  PMID: 1281615

Abstract

A rabbit corneal pocket model was used to demonstrate that physiologic concentrations of human recombinant (r) IL-8 may induce corneal neovascularization. Computer-assisted analysis of sequential fluorescein angiograms showed that rIL-8 doses ranging from 2 to 40 ng/cornea (P = 0.01), but not high dose rIL-8 (400 ng/cornea), results in neovascularization within 14 days. Repeat fluorescein angiograms 6 weeks after placing angiogenic doses of rIL-8 demonstrated significant regression (P = 0.01) of the vascularity present at 2 weeks, suggesting that IL-8 angiogenesis undergoes dynamic modulation similar to that normally seen in wound healing. To our knowledge, this is the first study showing an angiogenic role for IL-8, a finding that emphasizes the interplay between inflammation and wound healing. Our results imply that corneal-derived IL-8 may be important in corneal neovascularization, in particular, and that IL-8 may modulate wound healing in general. Finally, these results raise the possibility that corneal-derived cytokines, such as IL-8, may obfuscate the effects of agents tested in experimental corneal pocket models.

Full text

PDF
1279

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Hirano T., Taga T., Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990 Aug;4(11):2860–2867. [PubMed] [Google Scholar]
  2. Applegate L. A., Ley R. D. DNA damage is involved in the induction of opacification and neovascularization of the cornea by ultraviolet radiation. Exp Eye Res. 1991 Apr;52(4):493–497. doi: 10.1016/0014-4835(91)90047-i. [DOI] [PubMed] [Google Scholar]
  3. Ausprunk D. H., Falterman K., Folkman J. The sequence of events in the regression of corneal capillaries. Lab Invest. 1978 Mar;38(3):284–294. [PubMed] [Google Scholar]
  4. Avery R. L., Connor T. B., Jr, Farazdaghi M. Systemic amiloride inhibits experimentally induced neovascularization. Arch Ophthalmol. 1990 Oct;108(10):1474–1476. doi: 10.1001/archopht.1990.01070120122041. [DOI] [PubMed] [Google Scholar]
  5. BenEzra D., Hemo I., Maftzir G. In vivo angiogenic activity of interleukins. Arch Ophthalmol. 1990 Apr;108(4):573–576. doi: 10.1001/archopht.1990.01070060121061. [DOI] [PubMed] [Google Scholar]
  6. Bergstrom T. J., Roth M., Martonyi C. L. Pigmented iris angiography. Arch Ophthalmol. 1976 Jul;94(7):1180–1182. doi: 10.1001/archopht.1976.03910040088016. [DOI] [PubMed] [Google Scholar]
  7. Colditz I., Zwahlen R., Dewald B., Baggiolini M. In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am J Pathol. 1989 Apr;134(4):755–760. [PMC free article] [PubMed] [Google Scholar]
  8. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986 Jul 1;137(1):245–254. [PubMed] [Google Scholar]
  9. Elner V. M., Elner S. G., Pavilack M. A., Todd R. F., 3rd, Yue B. Y., Huber A. R. Intercellular adhesion molecule-1 in human corneal endothelium. Modulation and function. Am J Pathol. 1991 Mar;138(3):525–536. [PMC free article] [PubMed] [Google Scholar]
  10. Elner V. M., Strieter R. M., Pavilack M. A., Elner S. G., Remick D. G., Danforth J. M., Kunkel S. L. Human corneal interleukin-8. IL-1 and TNF-induced gene expression and secretion. Am J Pathol. 1991 Nov;139(5):977–988. [PMC free article] [PubMed] [Google Scholar]
  11. Epstein R. J., Hendricks R. L., Stulting R. D. Interleukin-2 induces corneal neovascularization in A/J mice. Cornea. 1990 Oct;9(4):318–323. [PubMed] [Google Scholar]
  12. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  13. Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., Vlodavsky I. A heparin-binding angiogenic protein--basic fibroblast growth factor--is stored within basement membrane. Am J Pathol. 1988 Feb;130(2):393–400. [PMC free article] [PubMed] [Google Scholar]
  14. Gimbrone M. A., Jr, Cotran R. S., Leapman S. B., Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974 Feb;52(2):413–427. doi: 10.1093/jnci/52.2.413. [DOI] [PubMed] [Google Scholar]
  15. Koch A. E., Polverini P. J., Leibovich S. J. Induction of neovascularization by activated human monocytes. J Leukoc Biol. 1986 Feb;39(2):233–238. doi: 10.1002/jlb.39.2.233. [DOI] [PubMed] [Google Scholar]
  16. Koch A. E., Polverini P. J., Leibovich S. J. Stimulation of neovascularization by human rheumatoid synovial tissue macrophages. Arthritis Rheum. 1986 Apr;29(4):471–479. doi: 10.1002/art.1780290403. [DOI] [PubMed] [Google Scholar]
  17. Langer R., Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976 Oct 28;263(5580):797–800. doi: 10.1038/263797a0. [DOI] [PubMed] [Google Scholar]
  18. Larsen C. G., Anderson A. O., Appella E., Oppenheim J. J., Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989 Mar 17;243(4897):1464–1466. doi: 10.1126/science.2648569. [DOI] [PubMed] [Google Scholar]
  19. Le J. M., Weinstein D., Gubler U., Vilcek J. Induction of membrane-associated interleukin 1 by tumor necrosis factor in human fibroblasts. J Immunol. 1987 Apr 1;138(7):2137–2142. [PubMed] [Google Scholar]
  20. Leibovich S. J., Polverini P. J., Shepard H. M., Wiseman D. M., Shively V., Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 1987 Oct 15;329(6140):630–632. doi: 10.1038/329630a0. [DOI] [PubMed] [Google Scholar]
  21. Libby P., Ordovas J. M., Auger K. R., Robbins A. H., Birinyi L. K., Dinarello C. A. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986 Aug;124(2):179–185. [PMC free article] [PubMed] [Google Scholar]
  22. Lutty G. A., Liu S. H., Prendergast R. A. Angiogenic lymphokines of activated T-cell origin. Invest Ophthalmol Vis Sci. 1983 Dec;24(12):1595–1601. [PubMed] [Google Scholar]
  23. Matsushima K., Morishita K., Yoshimura T., Lavu S., Kobayashi Y., Lew W., Appella E., Kung H. F., Leonard E. J., Oppenheim J. J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988 Jun 1;167(6):1883–1893. doi: 10.1084/jem.167.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsushima K., Oppenheim J. J. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Cytokine. 1989 Nov;1(1):2–13. doi: 10.1016/1043-4666(89)91043-0. [DOI] [PubMed] [Google Scholar]
  25. Moore J. W., 3rd, Sholley M. M. Comparison of the neovascular effects of stimulated macrophages and neutrophils in autologous rabbit corneas. Am J Pathol. 1985 Jul;120(1):87–98. [PMC free article] [PubMed] [Google Scholar]
  26. Ormerod L. D., Abelson M. B., Kenyon K. R. Standard models of corneal injury using alkali-immersed filter discs. Invest Ophthalmol Vis Sci. 1989 Oct;30(10):2148–2153. [PubMed] [Google Scholar]
  27. Parke A., Bhattacherjee P., Palmer R. M., Lazarus N. R. Characterization and quantification of copper sulfate-induced vascularization of the rabbit cornea. Am J Pathol. 1988 Jan;130(1):173–178. [PMC free article] [PubMed] [Google Scholar]
  28. Proia A. D., Chandler D. B., Haynes W. L., Smith C. F., Suvarnamani C., Erkel F. H., Klintworth G. K. Quantitation of corneal neovascularization using computerized image analysis. Lab Invest. 1988 Apr;58(4):473–479. [PubMed] [Google Scholar]
  29. Rochels R. Tierexperimentelle Untersuchungen zur Rolle von Entzündungsmediatoren bei der Hornhautneovaskularisation. Doc Ophthalmol. 1984 May 30;57(3):215–262. [PubMed] [Google Scholar]
  30. Rosenbaum J. T., Howes E. L., Jr, Rubin R. M., Samples J. R. Ocular inflammatory effects of intravitreally-injected tumor necrosis factor. Am J Pathol. 1988 Oct;133(1):47–53. [PMC free article] [PubMed] [Google Scholar]
  31. Rosenbaum J. T., Samples J. R., Hefeneider S. H., Howes E. L., Jr Ocular inflammatory effects of intravitreal interleukin 1. Arch Ophthalmol. 1987 Aug;105(8):1117–1120. doi: 10.1001/archopht.1987.01060080119040. [DOI] [PubMed] [Google Scholar]
  32. Ryu S., Albert D. M. Evaluation of tumor angiogenesis factor with the rabbit cornea model. Invest Ophthalmol Vis Sci. 1979 Aug;18(8):831–841. [PubMed] [Google Scholar]
  33. Schanzlin D. J., Cyr R. J., Friedlaender M. H. Histopathology of corneal neovascularization. Arch Ophthalmol. 1983 Mar;101(3):472–474. doi: 10.1001/archopht.1983.01040010472030. [DOI] [PubMed] [Google Scholar]
  34. Scroggs M. W., Proia A. D., Smith C. F., Halperin E. C., Klintworth G. K. The effect of total-body irradiation on corneal neovascularization in the Fischer 344 rat after chemical cauterization. Invest Ophthalmol Vis Sci. 1991 Jun;32(7):2105–2111. [PubMed] [Google Scholar]
  35. Shams N. B., Sigel M. M., Davis R. M. Interferon-gamma, Staphylococcus aureus, and lipopolysaccharide/silica enhance interleukin-1 beta production by human corneal cells. Reg Immunol. 1989 May-Jun;2(3):136–148. [PubMed] [Google Scholar]
  36. Sholley M. M., Gimbrone M. A., Jr, Cotran R. S. The effects of leukocyte depletion on corneal neovascularization. Lab Invest. 1978 Jan;38(1):32–40. [PubMed] [Google Scholar]
  37. Strieter R. M., Phan S. H., Showell H. J., Remick D. G., Lynch J. P., Genord M., Raiford C., Eskandari M., Marks R. M., Kunkel S. L. Monokine-induced neutrophil chemotactic factor gene expression in human fibroblasts. J Biol Chem. 1989 Jun 25;264(18):10621–10626. [PubMed] [Google Scholar]
  38. Strieter R. M., Wiggins R., Phan S. H., Wharram B. L., Showell H. J., Remick D. G., Chensue S. W., Kunkel S. L. Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem Biophys Res Commun. 1989 Jul 31;162(2):694–700. doi: 10.1016/0006-291x(89)92366-8. [DOI] [PubMed] [Google Scholar]
  39. Sunderkötter C., Beil W., Roth J., Sorg C. Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol. 1991 Apr;138(4):931–939. [PMC free article] [PubMed] [Google Scholar]
  40. Thelen M., Peveri P., Kernen P., von Tscharner V., Walz A., Baggiolini M. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J. 1988 Aug;2(11):2702–2706. [PubMed] [Google Scholar]
  41. Yoshimura T., Matsushima K., Oppenheim J. J., Leonard E. J. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987 Aug 1;139(3):788–793. [PubMed] [Google Scholar]
  42. Yoshimura T., Matsushima K., Tanaka S., Robinson E. A., Appella E., Oppenheim J. J., Leonard E. J. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9233–9237. doi: 10.1073/pnas.84.24.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES