Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Feb;69(2):1071–1078. doi: 10.1128/jvi.69.2.1071-1078.1995

Nuclear targeting of the tegument protein pp65 (UL83) of human cytomegalovirus: an unusual bipartite nuclear localization signal functions with other portions of the protein to mediate its efficient nuclear transport.

S Schmolke 1, P Drescher 1, G Jahn 1, B Plachter 1
PMCID: PMC188678  PMID: 7815485

Abstract

Large amounts of pp65 (UL83) of human cytomegalovirus are translocated to the cell nucleus during the first minutes after uptake of the tegument protein from infecting viral particles. Two stretches of basic amino acids which resembled nuclear localization signals (NLS) of both the simian virus 40 type and the bipartite type were found in the primary structure of pp65. Deletion of these sequences significantly impaired nuclear localization of the truncated proteins after transient expression. The results indicated that both elements contributed to the nuclear localization of the protein. When fused to the bacterial beta-galactosidase, only one of the two basic elements was sufficient to mediate nuclear translocation. This element consisted of two clusters of basic amino acids (boxes C and D), which were separated by a short spacer sequence. In contrast to other bipartite NLS of animal cells, both basic boxes C and D functioned independently in nuclear transport, thus resembling simian virus 40-type NLS. Yet, complete translocation of beta-galactosidase was only found in the bipartite configuration. When both boxes C and D were fused, thereby deleting the intervening sequences, the nuclear transport of beta-galactosidase was reduced to levels seen with constructs in which only one of the boxes was present. Appropriate spacing, therefore, was important but not absolutely required. This was in contrast with results for other bipartite NLS, in which spacer deletions led to complete cytoplasmic retention. The presented results demonstrate that efficient nuclear transport of pp65 is mediated by one dominant NLS and additional targeting sequences. The major NLS of pp65 is an unusual signal sequence composed of two weak NLS which function together as one strong bipartite nuclear targeting signal.

Full Text

The Full Text of this article is available as a PDF (453.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britt W. J., Auger D. Human cytomegalovirus virion-associated protein with kinase activity. J Virol. 1986 Jul;59(1):185–188. doi: 10.1128/jvi.59.1.185-188.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bröker M., Harthus H. P. Defined monoclonal antibodies to Escherichia coli beta-galactosidase as a tool for characterisation of recombinant expression products. FEBS Lett. 1989 Oct 23;257(1):118–122. doi: 10.1016/0014-5793(89)81800-9. [DOI] [PubMed] [Google Scholar]
  3. Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. doi: 10.1038/365666a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  5. Chelsky D., Ralph R., Jonak G. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol. 1989 Jun;9(6):2487–2492. doi: 10.1128/mcb.9.6.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Depto A. S., Stenberg R. M. Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J Virol. 1989 Mar;63(3):1232–1238. doi: 10.1128/jvi.63.3.1232-1238.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  8. Dingwall C., Robbins J., Dilworth S. M., Roberts B., Richardson W. D. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol. 1988 Sep;107(3):841–849. doi: 10.1083/jcb.107.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gao M., Knipe D. M. Distal protein sequences can affect the function of a nuclear localization signal. Mol Cell Biol. 1992 Mar;12(3):1330–1339. doi: 10.1128/mcb.12.3.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grefte A., Harmsen M. C., van der Giessen M., Knollema S., van Son W. J., The T. H. Presence of human cytomegalovirus (HCMV) immediate early mRNA but not ppUL83 (lower matrix protein pp65) mRNA in polymorphonuclear and mononuclear leukocytes during active HCMV infection. J Gen Virol. 1994 Aug;75(Pt 8):1989–1998. doi: 10.1099/0022-1317-75-8-1989. [DOI] [PubMed] [Google Scholar]
  11. Grefte J. M., van der Gun B. T., Schmolke S., van der Giessen M., van Son W. J., Plachter B., Jahn G., The T. H. The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection. J Gen Virol. 1992 Nov;73(Pt 11):2923–2932. doi: 10.1099/0022-1317-73-11-2923. [DOI] [PubMed] [Google Scholar]
  12. Hanover J. A. The nuclear pore: at the crossroads. FASEB J. 1992 Mar;6(6):2288–2295. doi: 10.1096/fasebj.6.6.1312045. [DOI] [PubMed] [Google Scholar]
  13. Hunter T., Karin M. The regulation of transcription by phosphorylation. Cell. 1992 Aug 7;70(3):375–387. doi: 10.1016/0092-8674(92)90162-6. [DOI] [PubMed] [Google Scholar]
  14. Irmiere A., Gibson W. Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology. 1983 Oct 15;130(1):118–133. doi: 10.1016/0042-6822(83)90122-8. [DOI] [PubMed] [Google Scholar]
  15. Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. A short amino acid sequence able to specify nuclear location. Cell. 1984 Dec;39(3 Pt 2):499–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
  16. Kleinschmidt J. A., Seiter A. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis. EMBO J. 1988 Jun;7(6):1605–1614. doi: 10.1002/j.1460-2075.1988.tb02986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Le Roux A., Berebbi M., Moukaddem M., Perricaudet M., Joab I. Identification of a short amino acid sequence essential for efficient nuclear targeting of the Epstein-Barr virus nuclear antigen 3A. J Virol. 1993 Mar;67(3):1716–1720. doi: 10.1128/jvi.67.3.1716-1720.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu B., Stinski M. F. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol. 1992 Jul;66(7):4434–4444. doi: 10.1128/jvi.66.7.4434-4444.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mikaélian I., Drouet E., Marechal V., Denoyel G., Nicolas J. C., Sergeant A. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence. J Virol. 1993 Feb;67(2):734–742. doi: 10.1128/jvi.67.2.734-742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nigg E. A., Baeuerle P. A., Lührmann R. Nuclear import-export: in search of signals and mechanisms. Cell. 1991 Jul 12;66(1):15–22. doi: 10.1016/0092-8674(91)90135-l. [DOI] [PubMed] [Google Scholar]
  21. Ohlin M., Sundqvist V. A., Gilljam G., Rudén U., Gombert F. O., Wahren B., Borrebaeck C. A. Characterization of human monoclonal antibodies directed against the pp65-kD matrix antigen of human cytomegalovirus. Clin Exp Immunol. 1991 Jun;84(3):508–514. [PMC free article] [PubMed] [Google Scholar]
  22. Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta. 1986 Dec 22;864(3-4):305–359. doi: 10.1016/0304-4157(86)90003-1. [DOI] [PubMed] [Google Scholar]
  23. Plachter B., Britt W., Vornhagen R., Stamminger T., Jahn G. Analysis of proteins encoded by IE regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens. Virology. 1993 Apr;193(2):642–652. doi: 10.1006/viro.1993.1172. [DOI] [PubMed] [Google Scholar]
  24. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991 Feb 8;64(3):615–623. doi: 10.1016/0092-8674(91)90245-t. [DOI] [PubMed] [Google Scholar]
  25. Roby C., Gibson W. Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J Virol. 1986 Sep;59(3):714–727. doi: 10.1128/jvi.59.3.714-727.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rüger B., Klages S., Walla B., Albrecht J., Fleckenstein B., Tomlinson P., Barrell B. Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. J Virol. 1987 Feb;61(2):446–453. doi: 10.1128/jvi.61.2.446-453.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scholl B. C., Von Hintzenstern J., Borisch B., Traupe B., Bröker M., Jahn G. Prokaryotic expression of immunogenic polypeptides of the large phosphoprotein (pp150) of human cytomegalovirus. J Gen Virol. 1988 Jun;69(Pt 6):1195–1204. doi: 10.1099/0022-1317-69-6-1195. [DOI] [PubMed] [Google Scholar]
  28. Smith M. R., Greene W. C. Characterization of a novel nuclear localization signal in the HTLV-I tax transactivator protein. Virology. 1992 Mar;187(1):316–320. doi: 10.1016/0042-6822(92)90320-o. [DOI] [PubMed] [Google Scholar]
  29. Somogyi T., Michelson S., Masse M. J. Genomic location of a human cytomegalovirus protein with protein kinase activity (PK68). Virology. 1990 Jan;174(1):276–285. doi: 10.1016/0042-6822(90)90075-3. [DOI] [PubMed] [Google Scholar]
  30. Stochaj U., Silver P. Nucleocytoplasmic traffic of proteins. Eur J Cell Biol. 1992 Oct;59(1):1–11. [PubMed] [Google Scholar]
  31. Waldo F. B., Britt W. J., Tomana M., Julian B. A., Mestecky J. Non-specific mesangial staining with antibodies against cytomegalovirus in immunoglobulin-A nephropathy. Lancet. 1989 Jan 21;1(8630):129–131. doi: 10.1016/s0140-6736(89)91144-6. [DOI] [PubMed] [Google Scholar]
  32. Zacksenhaus E., Bremner R., Phillips R. A., Gallie B. L. A bipartite nuclear localization signal in the retinoblastoma gene product and its importance for biological activity. Mol Cell Biol. 1993 Aug;13(8):4588–4599. doi: 10.1128/mcb.13.8.4588. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES