Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 Jan;142(1):273–283.

Fibroblast migration in fibrin gel matrices.

L F Brown 1, N Lanir 1, J McDonagh 1, K Tognazzi 1, A M Dvorak 1, H F Dvorak 1
PMCID: PMC1886838  PMID: 8424460

Abstract

In healing wounds and many solid tumors, locally increased microvascular permeability results in extravasation of fibrinogen and its extravascular coagulation to form a fibrin gel, with concomitant covalent cross-linking of fibrin by factor XIIIa. Subsequently, inflammatory cells, fibroblasts, and endothelial cells migrate into the gel and organize it into granulation tissue and later into mature collagenous connective tissue. To gain insight into some of the cell migration events associated with these processes, we developed a quantitative in vitro assay that permits the study of fibroblast migration in fibrin gels. Early passage human or rat fibroblasts were allowed to attach to tissue culture dishes and then were overlaid with a thin layer of fibrinogen that was clotted with thrombin. Fibroblasts began to migrate upwards into the fibrin within 24 hours and their numbers and the distance migrated were quantified over several days. The extent of fibroblast migration was affected importantly by the nature of the fibrin clot. Fibroblasts migrated optimally into gels prepared from fibrinogen at concentrations of -3 mg/ml; ie, near normal plasma fibrinogen levels. Migration was greatly enhanced by extensive cross-linking of the fibrin alpha-chains by factor XIIIa, as occurs when clotting takes place in vivo. When fibrinogen was clotted in Dulbecco's modified Eagle's medium, gamma-chains were cross-linked, but alpha-chain cross-linking was strikingly inhibited, and fibroblasts migrated poorly. Gels prepared from factor XIII-depleted fibrinogen exhibited neither alpha-nor gamma-chain cross-linking and did not support fibroblast migration. Further purification of fibrinogen by anion exchange high pressure liquid chromatography depleted fibrinogen of fibronectin, plasminogen, and other impurities; this purified fibrinogen clotted to form fibrin gels that supported reproducible fibroblast migration.

Full text

PDF
273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECK E., DUCKERT F., ERNST M. The influence of fibrin stabilizing factor on the growth of fibroblasts in vitro and wound healing. Thromb Diath Haemorrh. 1961 Dec 15;6:485–491. [PubMed] [Google Scholar]
  2. Biel H., Bohn H., Ronneberger H., Zwisler O. Beschleunigung der Wundheilung durch Faktor VIII der Blutgerinnung. Arzneimittelforschung. 1971 Oct;21(10):1429–1430. [PubMed] [Google Scholar]
  3. Brown L. F., Asch B., Harvey V. S., Buchinski B., Dvorak H. F. Fibrinogen influx and accumulation of cross-linked fibrin in mouse carcinomas. Cancer Res. 1988 Apr 1;48(7):1920–1925. [PubMed] [Google Scholar]
  4. Brown L. F., Van de Water L., Harvey V. S., Dvorak H. F. Fibrinogen influx and accumulation of cross-linked fibrin in healing wounds and in tumor stroma. Am J Pathol. 1988 Mar;130(3):455–465. [PMC free article] [PubMed] [Google Scholar]
  5. Carrell N. A., Erickson H. P., McDonagh J. Electron microscopy and hydrodynamic properties of factor XIII subunits. J Biol Chem. 1989 Jan 5;264(1):551–556. [PubMed] [Google Scholar]
  6. Colvin R. B., Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. II. Kinetics of fibrinogen/fibrin accumulation and vascular permeability changes in tuberculin and cutaneous basophil hypersensitivity reactions. J Immunol. 1975 Jan;114(1 Pt 2):377–387. [PubMed] [Google Scholar]
  7. Colvin R. B., Gardner P. I., Roblin R. O., Verderber E. L., Lanigan J. M., Mosesson M. W. Cell surface fibrinogen-fibrin receptors on cultured human fibroblasts. Association with fibronectin (cold insoluble globulin, LETS protein) and loss in SV40 transformed cells. Lab Invest. 1979 Nov;41(5):464–473. [PubMed] [Google Scholar]
  8. Curtis C. G., Brown K. L., Credo R. B., Domanik R. A., Gray A., Stenberg P., Lorand L. Calcium-dependent unmasking of active center cysteine during activation of fibrin stabilizing factor. Biochemistry. 1974 Aug 27;13(18):3774–3780. doi: 10.1021/bi00715a024. [DOI] [PubMed] [Google Scholar]
  9. Curtis C. G., Stenberg P., Chou C. H., Gray A., Brown K. L., Lorand L. Titration and subunit localization of active center cysteine in fibrinoligase (thrombin-activated fibrin stabilizing fector). Biochem Biophys Res Commun. 1973 May 1;52(1):51–56. doi: 10.1016/0006-291x(73)90952-2. [DOI] [PubMed] [Google Scholar]
  10. Dejana E., Languino L. R., Polentarutti N., Balconi G., Ryckewaert J. J., Larrieu M. J., Donati M. B., Mantovani A., Marguerie G. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest. 1985 Jan;75(1):11–18. doi: 10.1172/JCI111661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dejana E., Vergara-Dauden M., Balconi G., Pietra A., Cherel G., Donati M. B., Larrieu M. J., Marguerie G. Specific binding of human fibrinogen to cultured human fibroblasts. Evidence for the involvement of the E domain. Eur J Biochem. 1984 Mar 15;139(3):657–662. doi: 10.1111/j.1432-1033.1984.tb08054.x. [DOI] [PubMed] [Google Scholar]
  12. Dvorak H. F., Form D. M., Manseau E. J., Smith B. D. Pathogenesis of desmoplasia. I. Immunofluorescence identification and localization of some structural proteins of line 1 and line 10 guinea pig tumors and of healing wounds. J Natl Cancer Inst. 1984 Nov;73(5):1195–1205. [PubMed] [Google Scholar]
  13. Dvorak H. F., Harvey V. S., Estrella P., Brown L. F., McDonagh J., Dvorak A. M. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest. 1987 Dec;57(6):673–686. [PubMed] [Google Scholar]
  14. Dvorak H. F., Harvey V. S., McDonagh J. Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res. 1984 Aug;44(8):3348–3354. [PubMed] [Google Scholar]
  15. Dvorak H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650–1659. doi: 10.1056/NEJM198612253152606. [DOI] [PubMed] [Google Scholar]
  16. Francis C. W., Kraus D. H., Marder V. J. Structural and chromatographic heterogeneity of normal plasma fibrinogen associated with the presence of three gamma-chain types with distinct molecular weights. Biochim Biophys Acta. 1983 Apr 28;744(2):155–164. doi: 10.1016/0167-4838(83)90085-7. [DOI] [PubMed] [Google Scholar]
  17. Gillery P., Bellon G., Coustry F., Borel J. P. Cultures of fibroblasts in fibrin lattices: models for the study of metabolic activities of the cells in physiological conditions. J Cell Physiol. 1989 Sep;140(3):483–490. doi: 10.1002/jcp.1041400312. [DOI] [PubMed] [Google Scholar]
  18. Graham M. F., Diegelmann R. F., Cohen I. K. An in vitro model of fibroplasia: simultaneous quantification of fibroblast proliferation, migration, and collagen synthesis. Proc Soc Exp Biol Med. 1984 Jul;176(3):302–308. doi: 10.3181/00379727-176-41875. [DOI] [PubMed] [Google Scholar]
  19. Grinnell F., Feld M., Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell. 1980 Feb;19(2):517–525. doi: 10.1016/0092-8674(80)90526-7. [DOI] [PubMed] [Google Scholar]
  20. Hjelm H., Hjelm K., Sjöquist J. Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett. 1972 Nov 15;28(1):73–76. doi: 10.1016/0014-5793(72)80680-x. [DOI] [PubMed] [Google Scholar]
  21. Holm B., Nilsen D. W., Kierulf P., Godal H. C. Purification and characterization of 3 fibrinogens with different molecular weights obtained from normal human plasma. Thromb Res. 1985 Jan 1;37(1):165–176. doi: 10.1016/0049-3848(85)90043-x. [DOI] [PubMed] [Google Scholar]
  22. Knox P., Crooks S., Rimmer C. S. Role of fibronectin in the migration of fibroblasts into plasma clots. J Cell Biol. 1986 Jun;102(6):2318–2323. doi: 10.1083/jcb.102.6.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Knox P., Crooks S., Scaife M. C., Patel S. Role of plasminogen, plasmin, and plasminogen activators in the migration of fibroblasts into plasma clots. J Cell Physiol. 1987 Sep;132(3):501–508. doi: 10.1002/jcp.1041320312. [DOI] [PubMed] [Google Scholar]
  24. Lanir N., Ciano P. S., Van de Water L., McDonagh J., Dvorak A. M., Dvorak H. F. Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII, fibronectin, and glycosaminoglycan content on cell migration. J Immunol. 1988 Apr 1;140(7):2340–2349. [PubMed] [Google Scholar]
  25. Marktl W., Rudas B. The effect of factor XIII on wound granulation in the rat. Thromb Diath Haemorrh. 1974 Dec 31;32(2-3):578–581. [PubMed] [Google Scholar]
  26. Mosesson M. W., Finlayson J. S., Umfleet R. A. Human fibrinogen heterogeneities. 3. Identification of chain variants. J Biol Chem. 1972 Aug 25;247(16):5223–5227. [PubMed] [Google Scholar]
  27. Mosher D. F. Cross-linking of plasma and cellular fibronectin by plasma transglutaminase. Ann N Y Acad Sci. 1978 Jun 20;312:38–42. doi: 10.1111/j.1749-6632.1978.tb16791.x. [DOI] [PubMed] [Google Scholar]
  28. Nagy J. A., Brown L. F., Senger D. R., Lanir N., Van de Water L., Dvorak A. M., Dvorak H. F. Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta. 1989 Feb;948(3):305–326. doi: 10.1016/0304-419x(89)90004-8. [DOI] [PubMed] [Google Scholar]
  29. Niewiarowski S., Regoeczi E., Mustard J. F. Adhesion of fibroblasts to polymerizing fibrin and retraction of fibrin induced by fibroblasts. Proc Soc Exp Biol Med. 1972 May;140(1):199–204. doi: 10.3181/00379727-140-36425. [DOI] [PubMed] [Google Scholar]
  30. Pohl J., Christophers E. Growth characteristics of skin fibroblasts and 3T3 cells entrapped by polymerizing fibrin. In Vitro. 1979 Aug;15(8):624–630. doi: 10.1007/BF02623398. [DOI] [PubMed] [Google Scholar]
  31. Ruoslahti E., Vaheri A., Kuusela P., Linder E. Fibroblast surface antigen: a new serum protein. Biochim Biophys Acta. 1973 Oct 18;322(2):352–358. doi: 10.1016/0005-2795(73)90310-3. [DOI] [PubMed] [Google Scholar]
  32. Skrzynia C., Reisner H. M., McDonagh J. Characterization of the catalytic subunit of factor XIII by radioimmunoassay. Blood. 1982 Nov;60(5):1089–1095. [PubMed] [Google Scholar]
  33. Tuan T. L., Grinnell F. Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts. J Cell Physiol. 1989 Sep;140(3):577–583. doi: 10.1002/jcp.1041400324. [DOI] [PubMed] [Google Scholar]
  34. Ueyama M., Urayama T. The role of factor XIII in fibroblast proliferation. Jpn J Exp Med. 1978 Apr;48(2):135–142. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES