Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 May;142(5):1668–1677.

Beta very low density lipoprotein and clathrin-coated vesicles co-localize to microvilli in pigeon monocyte-derived macrophages.

S C Landers 1, N L Jones 1, A S Williams 1, J C Lewis 1
PMCID: PMC1886901  PMID: 8494058

Abstract

Macrophages derived from blood monocytes are key in the development of atherosclerosis, as monocyte migration into the intima and accumulation of cholesterol leads to foam cell formation. To investigate the relationship between lipoprotein binding and the distribution of clathrin-coated endocytic vesicles, monocyte-derived macrophages were exposed in vitro to beta very low density lipoprotein (beta VLDL), conjugated to colloidal gold, and later were processed for immuno-electron microscopy to localize clathrin-coated vesicles. The immunolocalization was done in conjunction with either cryosectioning or whole mount intermediate voltage electron microscopy. Preferential binding of beta VLDL on small membrane ruffles and microvilli was quantitatively verified. Clathrin-coated vesicles were distributed throughout the cell; however, clusters of microvilli were associated with both a high concentration of coated vesicles and lipoprotein. Small membrane ruffles were not associated with clathrin-coated vesicles. These data support our hypothesis that endocytosis of beta VLDL near microvilli involves coated vesicles, whereas endocytosis of beta VLDL near ruffles is not mediated by coated endocytic vesicles. Furthermore, the association of coated vesicles with microvilli but not membrane ruffles may be important in understanding ligand trafficking within the cell. Given the distribution of coated vesicles within the cell, it is possible that the site of lipoprotein binding may determine the mechanism of entry into the cell and the metabolic effects of the internalized ligand.

Full text

PDF
1668

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Vasile E., Mello R. J., Brown M. S., Goldstein J. L. Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov;15(3):919–933. doi: 10.1016/0092-8674(78)90276-3. [DOI] [PubMed] [Google Scholar]
  2. Brown M. S., Basu S. K., Falck J. R., Ho Y. K., Goldstein J. L. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980;13(1):67–81. doi: 10.1002/jss.400130107. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  4. Carpentier J. L., Gorden P., Anderson R. G., Goldstein J. L., Brown M. S., Cohen S., Orci L. Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J Cell Biol. 1982 Oct;95(1):73–77. doi: 10.1083/jcb.95.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarkson T. B., Lombardi D. M., Alexander N. J., Lewis J. C. Diet and vasectomy: effects on atherogenesis in cynomolgus macaques. Exp Mol Pathol. 1986 Feb;44(1):29–49. doi: 10.1016/0014-4800(86)90031-6. [DOI] [PubMed] [Google Scholar]
  6. Fukuda S., Horiuchi S., Tomita K., Murakami M., Morino Y., Takahashi K. Acetylated low-density lipoprotein is endocytosed through coated pits by rat peritoneal macrophages. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(1):1–13. doi: 10.1007/BF02889945. [DOI] [PubMed] [Google Scholar]
  7. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  8. Henson D. A., St Clair R. W., Lewis J. C. Morphological characterization of beta-VLDL and acetylated-LDL binding and internalization by cultured pigeon monocytes. Exp Mol Pathol. 1989 Dec;51(3):243–263. doi: 10.1016/0014-4800(89)90023-3. [DOI] [PubMed] [Google Scholar]
  9. Henson D. A., St Clair R. W., Lewis J. C. beta-VLDL and acetylated-LDL binding to pigeon monocyte macrophages. Atherosclerosis. 1989 Jul;78(1):47–60. doi: 10.1016/0021-9150(89)90158-5. [DOI] [PubMed] [Google Scholar]
  10. Jerome W. G., Lewis J. C. Early atherogenesis in White Carneau pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation. Am J Pathol. 1984 Jul;116(1):56–68. [PMC free article] [PubMed] [Google Scholar]
  11. Jones N. L., Allen N. S., Lewis J. C. Beta VLDL uptake by pigeon monocyte-derived macrophages: correlation of binding dynamics with three-dimensional ultrastructure. Cell Motil Cytoskeleton. 1991;19(3):139–151. doi: 10.1002/cm.970190302. [DOI] [PubMed] [Google Scholar]
  12. Joris I., Zand T., Nunnari J. J., Krolikowski F. J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983 Dec;113(3):341–358. [PMC free article] [PubMed] [Google Scholar]
  13. Lewis J. C., Hantgan R. R., Stevenson S. C., Thornburg T., Kieffer N., Guichard J., Breton-Gorius J. Fibrinogen and glycoprotein IIb/IIIa localization during platelet adhesion. Localization to the granulomere and at sites of platelet interaction. Am J Pathol. 1990 Jan;136(1):239–252. [PMC free article] [PubMed] [Google Scholar]
  14. Lewis J. C., Johnson C., Ramsamooj P., Hantgan R. R. Orientation and specificity of fibrin protofibril binding to ADP-stimulated platelets. Blood. 1988 Dec;72(6):1992–2000. [PubMed] [Google Scholar]
  15. Lewis J. C., Taylor R. G., Jerome W. G. Foam cell characteristics in coronary arteries and aortas of White Carneau pigeons with moderate hypercholesterolemia. Ann N Y Acad Sci. 1985;454:91–100. doi: 10.1111/j.1749-6632.1985.tb11847.x. [DOI] [PubMed] [Google Scholar]
  16. Lewis J. C., Taylor R. G., Jones N. D., St Clair R. W., Cornhill J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab Invest. 1982 Feb;46(2):123–138. [PubMed] [Google Scholar]
  17. Louvard D., Morris C., Warren G., Stanley K., Winkler F., Reggio H. A monoclonal antibody to the heavy chain of clathrin. EMBO J. 1983;2(10):1655–1664. doi: 10.1002/j.1460-2075.1983.tb01640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mommaas-Kienhuis A. M., van der Schroeff J. G., Wijsman M. C., Daems W. T., Vermeer B. J. Conjugates of colloidal gold with native and acetylated low density lipoproteins for ultrastructural investigations on receptor-mediated endocytosis by cultured human monocyte-derived macrophages. Histochemistry. 1985;83(1):29–35. doi: 10.1007/BF00495296. [DOI] [PubMed] [Google Scholar]
  19. Pastan I. H., Willingham M. C. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. doi: 10.1126/science.6170111. [DOI] [PubMed] [Google Scholar]
  20. Pataki M., Lusztig G., Robenek H. Endocytosis of oxidized LDL and reversibility of migration inhibition in macrophage-derived foam cells in vitro. A mechanism for atherosclerosis regression? Arterioscler Thromb. 1992 Aug;12(8):936–944. doi: 10.1161/01.atv.12.8.936. [DOI] [PubMed] [Google Scholar]
  21. Pumplin D. W., Bloch R. J. Clathrin-coated membrane: a distinct membrane domain in acetylcholine receptor clusters of rat myotubes. Cell Motil Cytoskeleton. 1990;15(2):121–134. doi: 10.1002/cm.970150208. [DOI] [PubMed] [Google Scholar]
  22. Puszkin S., Kohtz J. D., Schook W. J., Kohtz D. S. Clathrin-coated vesicle subtypes in mammalian brain tissue: detection of polypeptide heterogeneity by immunoprecipitation with monoclonal antibodies. J Neurochem. 1989 Jul;53(1):51–63. doi: 10.1111/j.1471-4159.1989.tb07294.x. [DOI] [PubMed] [Google Scholar]
  23. Robenek H., Hesz A., Rassat J. Variability of the topography of low-density lipoprotein (LDL) receptors in the plasma membrane of cultured human skin fibroblasts as revealed by gold-LDL conjugates in conjunction with the surface replication technique. J Ultrastruct Res. 1983 Feb;82(2):143–155. doi: 10.1016/s0022-5320(83)90049-7. [DOI] [PubMed] [Google Scholar]
  24. Robenek H., Schmitz G., Assmann G. Topography and dynamics of receptors for acetylated and malondialdehyde-modified low-density lipoprotein in the plasma membrane of mouse peritoneal macrophages as visualized by colloidal gold in conjunction with surface replicas. J Histochem Cytochem. 1984 Oct;32(10):1017–1027. doi: 10.1177/32.10.6481148. [DOI] [PubMed] [Google Scholar]
  25. Robinson M. S. 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies. J Cell Biol. 1987 Apr;104(4):887–895. doi: 10.1083/jcb.104.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schliwa M., van Blerkom J., Porter K. R. Stabilization and the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4329–4333. doi: 10.1073/pnas.78.7.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shio H., Haley N. J., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. II. Morphometric analysis of lipid-filled lysosomes and lipid droplets in aortic cell populations. Lab Invest. 1978 Oct;39(4):390–397. [PubMed] [Google Scholar]
  28. Stary H. C. Macrophage foam cells in the coronary artery intima of human infants. Ann N Y Acad Sci. 1985;454:5–8. doi: 10.1111/j.1749-6632.1985.tb11839.x. [DOI] [PubMed] [Google Scholar]
  29. Tabas I., Lim S., Xu X. X., Maxfield F. R. Endocytosed beta-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages. J Cell Biol. 1990 Sep;111(3):929–940. doi: 10.1083/jcb.111.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tabas I., Myers J. N., Innerarity T. L., Xu X. X., Arnold K., Boyles J., Maxfield F. R. The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages. J Cell Biol. 1991 Dec;115(6):1547–1560. doi: 10.1083/jcb.115.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Willingham M. C., Maxfield F. R., Pastan I. H. alpha 2 Macroglobulin binding to the plasma membrane of cultured fibroblasts. Diffuse binding followed by clustering in coated regions. J Cell Biol. 1979 Sep;82(3):614–625. doi: 10.1083/jcb.82.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willingham M. C., Pastan I. H. Transit of epidermal growth factor through coated pits of the Golgi system. J Cell Biol. 1982 Jul;94(1):207–212. doi: 10.1083/jcb.94.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Willingham M. C., Pastan I. The receptosome: an intermediate organelle of receptor mediated endocytosis in cultured fibroblasts. Cell. 1980 Aug;21(1):67–77. doi: 10.1016/0092-8674(80)90115-4. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES