Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 Jul;143(1):164–172.

Immunohistochemical study of intimal microvessels in coronary atherosclerosis.

Y Zhang 1, W J Cliff 1, G I Schoefl 1, G Higgins 1
PMCID: PMC1886935  PMID: 7686341

Abstract

Two hundred ninety-nine human coronary artery paraffin-embedded tissue blocks were examined for intimal microvessel invasion by probing for factor VIII-associated antigen with indirect immunofluorescence and high resolution confocal microscopy. The results obtained confirm that intimal microvessels originate in the adventitia and show that the richness of intimal microvessels is strongly positively correlated with intimal thickness and negatively correlated with relative lumen size. A number of plasma constituents were examined in serial sections. Comparison of immunofluorescence distribution patterns of these components with intimal microvessel distribution patterns reveals that intimal microvessels leak plasma albumin into artery walls, exude fibrinogen, and are associated with the build-up of plasma cells within atherosclerotic lesions. Therefore, intimal microvessels are demonstrated to play important roles in the development of atherosclerosis.

Full text

PDF
164

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barger A. C., Beeuwkes R., 3rd, Lainey L. L., Silverman K. J. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984 Jan 19;310(3):175–177. doi: 10.1056/NEJM198401193100307. [DOI] [PubMed] [Google Scholar]
  2. Barger A. C., Beeuwkes R., 3rd Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am J Cardiol. 1990 Nov 6;66(16):41G–43G. doi: 10.1016/0002-9149(90)90394-g. [DOI] [PubMed] [Google Scholar]
  3. Cliff W. J., Schoefl G. I. Pathological vascularization of the coronary intima. Ciba Found Symp. 1983;100:207–221. doi: 10.1002/9780470720813.ch12. [DOI] [PubMed] [Google Scholar]
  4. FRIEDMAN M., BYERS S. O., ST GEORGE S. Origin of lipid and cholesterol in experimental thromboatherosclerosis. J Clin Invest. 1962 Apr;41:828–841. doi: 10.1172/JCI104540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GEIRINGER E. Intimal vascularization and atherosclerosis. J Pathol Bacteriol. 1951 Apr;63(2):201–211. doi: 10.1002/path.1700630204. [DOI] [PubMed] [Google Scholar]
  6. Groszek E., Grundy S. M. The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. J Chronic Dis. 1980;33(11-12):679–684. doi: 10.1016/0021-9681(80)90054-5. [DOI] [PubMed] [Google Scholar]
  7. Hoyer L. W., De los Santos R. P., Hoyer J. R. Antihemophilic factor antigen. Localization in endothelial cells by immunofluorescent microscopy. J Clin Invest. 1973 Nov;52(11):2737–2744. doi: 10.1172/JCI107469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang S. N., Minassian H., More J. D. Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Invest. 1976 Oct;35(4):383–390. [PubMed] [Google Scholar]
  9. Kadish J. L. Fibrin and atherogenesis--a hypothesis. Atherosclerosis. 1979 Aug;33(4):409–413. doi: 10.1016/0021-9150(79)90033-9. [DOI] [PubMed] [Google Scholar]
  10. Lund B., Jensen O. M. Renal transplantation in rabbits. 3. Morphological alterations in allografts. Acta Pathol Microbiol Scand A. 1970;78(6):713–728. doi: 10.1111/j.1699-0463.1970.tb03524.x. [DOI] [PubMed] [Google Scholar]
  11. Pedersen N. C., Morris B. The role of the lymphatic system in the rejection of homografts: a study of lymph from renal transplants. J Exp Med. 1970 May 1;131(5):936–969. doi: 10.1084/jem.131.5.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reddy G. S., Cliff W. J. Morphologic changes in arterial grafts in rabbit ears. Lab Invest. 1979 Jan;40(1):109–121. [PubMed] [Google Scholar]
  13. Rosenfeld M. E., Khoo J. C., Miller E., Parthasarathy S., Palinski W., Witztum J. L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest. 1991 Jan;87(1):90–99. doi: 10.1172/JCI115006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCHOEFL G. I. STUDIES ON INFLAMMATION. III. GROWING CAPILLARIES: THEIR STRUCTURE AND PERMEABILITY. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Nov 8;337:97–141. [PubMed] [Google Scholar]
  15. SCHORNAGEL H. E. Intimal thickening in the coronary arteries in infants. AMA Arch Pathol. 1956 Dec;62(6):427–432. [PubMed] [Google Scholar]
  16. Thomas A. C., Davies M. J. Post-mortem investigation and quantification of coronary artery disease. Histopathology. 1985 Sep;9(9):959–976. doi: 10.1111/j.1365-2559.1985.tb02880.x. [DOI] [PubMed] [Google Scholar]
  17. Vancov V. Structural basis of the microcirculation in the wall of arterial vessels. Bibl Anat. 1973;11:383–388. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES