Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 Jul;143(1):65–75.

Regulation of complement membrane attack complex formation in myocardial infarction.

A Väkevä 1, P Laurila 1, S Meri 1
PMCID: PMC1886952  PMID: 7686345

Abstract

Recent studies have suggested that the complement (C) system is involved in the development of tissue injury of myocardial infarction. As it is not known why the strictly controlled C system starts to react against autologous heart tissue, we have analyzed the expression of various membrane regulators of C (CR1, DAF, MCP, CD59, C8 binding protein) and the pattern of deposition of C components and plasma C regulators (C4b binding protein and vitronectin) in normal (n = 7) and infarcted (n = 13) human myocardium. In the infarcted myocardium deposits of the C membrane attack complex (MAC) were observed by immunofluorescence microscopy, and lesions resembling the transmembrane channels of MAC were detected by transmission electron microscopy. CD59 and C8 binding protein were strongly expressed by muscle cells of normal myocardial tissue. Little or no CR1, MCP, and DAF was observed on these cells. The assembly of MAC was accompanied by the deposition of vitronectin (S-protein) and C4b binding protein in the infarcted areas of myocardium. In accordance with our earlier results the expression of CD59 but not of C8 binding protein was clearly diminished in the lesions. The results show that C8 binding protein, vitronectin, and C4b binding protein do not prevent complement attack against the infarcted myocardium but rather become codeposited with the MAC. Ischemia-induced transformation of nonviable cells into complement activators, acquired loss of resistance to the MAC by shedding of CD59, and recruitment of multifunctional serum proteins by MAC could thus constitute a general process aimed at the clearance of injured tissue.

Full text

PDF
65

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole J. L., Housley G. A., Jr, Dykman T. R., MacDermott R. P., Atkinson J. P. Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines. Proc Natl Acad Sci U S A. 1985 Feb;82(3):859–863. doi: 10.1073/pnas.82.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford M. H., Grover F. L., Kolb W. P., McMahan C. A., O'Rourke R. A., McManus L. M., Pinckard R. N. Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation. 1988 Dec;78(6):1449–1458. doi: 10.1161/01.cir.78.6.1449. [DOI] [PubMed] [Google Scholar]
  3. Dahlbäck B., Stenflo J. High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2512–2516. doi: 10.1073/pnas.78.4.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Entman M. L., Michael L., Rossen R. D., Dreyer W. J., Anderson D. C., Taylor A. A., Smith C. W. Inflammation in the course of early myocardial ischemia. FASEB J. 1991 Aug;5(11):2529–2537. doi: 10.1096/fasebj.5.11.1868978. [DOI] [PubMed] [Google Scholar]
  6. Fearon D. T. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5867–5871. doi: 10.1073/pnas.76.11.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox K. A. Thrombolysis: adjuvant therapy and the role of complement. Eur Heart J. 1990 Aug;11 (Suppl F):36–42. doi: 10.1093/eurheartj/11.suppl_f.36. [DOI] [PubMed] [Google Scholar]
  8. Hamilton K. K., Ji Z., Rollins S., Stewart B. H., Sims P. J. Regulatory control of the terminal complement proteins at the surface of human endothelial cells: neutralization of a C5b-9 inhibitor by antibody to CD59. Blood. 1990 Dec 15;76(12):2572–2577. [PubMed] [Google Scholar]
  9. Heimer G. V., Taylor C. E. Improved mountant for immunofluorescence preparations. J Clin Pathol. 1974 Mar;27(3):254–256. doi: 10.1136/jcp.27.3.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hessing M. The interaction between complement component C4b-binding protein and the vitamin K-dependent protein S forms a link between blood coagulation and the complement system. Biochem J. 1991 Aug 1;277(Pt 3):581–592. doi: 10.1042/bj2770581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes C. H., Simpson K. L., Okada H., Okada N., Wainwright S. D., Purcell D. F., Houlihan J. M. Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol. 1992 Jun;22(6):1579–1585. doi: 10.1002/eji.1830220635. [DOI] [PubMed] [Google Scholar]
  12. Hugo F., Hamdoch T., Mathey D., Schäfer H., Bhakdi S. Quantitative measurement of SC5b-9 and C5b-9(m) in infarcted areas of human myocardium. Clin Exp Immunol. 1990 Jul;81(1):132–136. doi: 10.1111/j.1365-2249.1990.tb05303.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ito B. R., Schmid-Schönbein G., Engler R. L. Effects of leukocyte activation on myocardial vascular resistance. Blood Cells. 1990;16(1):145–166. [PubMed] [Google Scholar]
  14. Jenne D. E., Lowin B., Peitsch M. C., Böttcher A., Schmitz G., Tschopp J. Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma. J Biol Chem. 1991 Jun 15;266(17):11030–11036. [PubMed] [Google Scholar]
  15. Jenne D. E., Tschopp J. Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci. 1992 Apr;17(4):154–159. doi: 10.1016/0968-0004(92)90325-4. [DOI] [PubMed] [Google Scholar]
  16. Jenne D. E., Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7123–7127. doi: 10.1073/pnas.86.18.7123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maroko P. R., Carpenter C. B., Chiariello M., Fishbein M. C., Radvany P., Knostman J. D., Hale S. L. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978 Mar;61(3):661–670. doi: 10.1172/JCI108978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meri S., Morgan B. P., Davies A., Daniels R. H., Olavesen M. G., Waldmann H., Lachmann P. J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990 Sep;71(1):1–9. [PMC free article] [PubMed] [Google Scholar]
  19. Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy B. F., Kirszbaum L., Walker I. D., d'Apice A. J. SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest. 1988 Jun;81(6):1858–1864. doi: 10.1172/JCI113531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  22. Pinckard R. N., O'Rourke R. A., Crawford M. H., Grover F. S., McManus L. M., Ghidoni J. J., Storrs S. B., Olson M. S. Complement localization and mediation of ischemic injury in baboon myocardium. J Clin Invest. 1980 Nov;66(5):1050–1056. doi: 10.1172/JCI109933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pinckard R. N., Olson M. S., Giclas P. C., Terry R., Boyer J. T., O'Rourke R. A. Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction. J Clin Invest. 1975 Sep;56(3):740–750. doi: 10.1172/JCI108145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Podack E. R., Müller-Eberhard H. J. Isolation of human S-protein, an inhibitor of the membrane attack complex of complement. J Biol Chem. 1979 Oct 10;254(19):9808–9814. [PubMed] [Google Scholar]
  25. Rus H. G., Niculescu F., Vlaicu R. Presence of C5b-9 complement complex and S-protein in human myocardial areas with necrosis and sclerosis. Immunol Lett. 1987 Oct;16(1):15–20. doi: 10.1016/0165-2478(87)90054-x. [DOI] [PubMed] [Google Scholar]
  26. Savill J., Dransfield I., Hogg N., Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 1990 Jan 11;343(6254):170–173. doi: 10.1038/343170a0. [DOI] [PubMed] [Google Scholar]
  27. Scharfstein J., Ferreira A., Gigli I., Nussenzweig V. Human C4-binding protein. I. Isolation and characterization. J Exp Med. 1978 Jul 1;148(1):207–222. doi: 10.1084/jem.148.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schäfer H., Mathey D., Hugo F., Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol. 1986 Sep 15;137(6):1945–1949. [PubMed] [Google Scholar]
  29. Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
  30. Stahl G. L., Amsterdam E. A., Symons J. D., Longhurst J. C. Role of thromboxane A2 in the cardiovascular response to intracoronary C5a. Circ Res. 1990 Apr;66(4):1103–1111. doi: 10.1161/01.res.66.4.1103. [DOI] [PubMed] [Google Scholar]
  31. Sugita Y., Nakano Y., Tomita M. Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem. 1988 Oct;104(4):633–637. doi: 10.1093/oxfordjournals.jbchem.a122524. [DOI] [PubMed] [Google Scholar]
  32. Väkevä A., Laurila P., Meri S. Loss of expression of protectin (CD59) is associated with complement membrane attack complex deposition in myocardial infarction. Lab Invest. 1992 Nov;67(5):608–616. [PubMed] [Google Scholar]
  33. Watts M. J., Dankert J. R., Morgan E. P. Isolation and characterization of a membrane-attack-complex-inhibiting protein present in human serum and other biological fluids. Biochem J. 1990 Jan 15;265(2):471–477. doi: 10.1042/bj2650471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weisman H. F., Bartow T., Leppo M. K., Marsh H. C., Jr, Carson G. R., Concino M. F., Boyle M. P., Roux K. H., Weisfeldt M. L., Fearon D. T. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990 Jul 13;249(4965):146–151. doi: 10.1126/science.2371562. [DOI] [PubMed] [Google Scholar]
  35. Whaley K., Ruddy S. Modulation of C3b hemolytic activity by a plasma protein distinct from C3b inactivator. Science. 1976 Sep 10;193(4257):1011–1013. doi: 10.1126/science.948757. [DOI] [PubMed] [Google Scholar]
  36. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zimmermann A., Gerber H., Nussenzweig V., Isliker H. Decay-accelerating factor in the cardiomyocytes of normal individuals and patients with myocardial infarction. Virchows Arch A Pathol Anat Histopathol. 1990;417(4):299–304. doi: 10.1007/BF01605780. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES