Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 Jun;142(6):1794–1803.

Differential infiltration by CD45RO and CD45RA subsets of T cells associated with human heart allograft rejection.

S Ibrahim 1, D V Dawson 1, P Van Trigt 1, F Sanfilippo 1
PMCID: PMC1886988  PMID: 8506948

Abstract

Subsets of T cells express different isoforms of the leukocyte common antigen CD45; those expressing the glycoprotein 220 isoform (CD45RA) have been characterized as naive in their response to antigens, and those expressing the glycoprotein 180 isoform (CD45RO) as memory T cells. The association between the rejection status of human cardiac allograft recipients and the relative infiltration of the CD45 subsets of both CD8+ and CD4+ T cells was examined using two-color immunohistological labeling techniques on 33 heart transplant biopsies, categorized by routine histological and clinical criteria as mild (requiring no treatment) or moderate (requiring antirejection therapy) rejection. Double-labeling was performed using pairs of monoclonal antibodies to define the following populations: CD4+ CD45RA+, CD4+ CD45RO+, CD8+ CD45RA+, and CD8+-CD45RO+. The number of cells per high-power field (HPF) for each of these cell subsets was counted in every biopsy. In cases with mild rejection, infiltration was predominant for CD4+ CD45RA+ cells (median = 5.0 cells/HPF) relative to CD4+ CD45RO+ (3.12 cells/HPF), CD8+ CD45RA+ (2.14 cells/HPF), and especially CD8+ CD45RO+ (1.22 cells/HPF) populations. In cases with moderate rejection, all four subpopulations increased but were essentially equivalent in intensity, such that in comparison to cases with mild rejection, the smallest increase was seen for CD4+ CD45RA+ cells (6.67 cells/HPF, P < 0.09) and the greatest for CD8+ CD45RO+ cells (7.00 cells/HPF, P < 0.002). A majority of CD8 cells expressed CD45RA in 14 of 16 (88%) cases of mild rejection compared to only 2 of 17 cases of moderate rejection. Moreover, the ratio of CD45RO+ to CD45RA+ cells in each biopsy was higher in moderate versus mild rejection for both CD4 (median ratios = 1.13 versus 0.68, respectively; P < 0.008) and CD8 (1.43 versus 0.58, respectively; P < 0.005) subsets. A majority of T cells expressed CD45RO in cases of moderate rejection (11 of 14 or 79%), compared to only 1 of 13 (8%) cases of mild rejection. These findings indicate that during generally self-limited mild acute cardiac allograft rejection there is a predominance of naive CD45RA+ T cells, especially of the CD4 phenotype, whereas during moderate rejection there is a significant shift toward activated CD45RO+ T cells, especially in the CD8 population.

Full text

PDF
1794

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Amlot P. L., Timms A., Lombardi G., Lechler R., Janossy G. The development of primed/memory CD8+ lymphocytes in vitro and in rejecting kidneys after transplantation. Clin Exp Immunol. 1990 Aug;81(2):225–231. doi: 10.1111/j.1365-2249.1990.tb03322.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akbar A. N., Salmon M., Ivory K., Taki S., Pilling D., Janossy G. Human CD4+CD45R0+ and CD4+CD45RA+ T cells synergize in response to alloantigens. Eur J Immunol. 1991 Oct;21(10):2517–2522. doi: 10.1002/eji.1830211031. [DOI] [PubMed] [Google Scholar]
  3. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  4. Akbar A. N., Timms A., Janossy G. Cellular events during memory T-cell activation in vitro: the UCHL1 (180,000 MW) determinant is newly synthesized after mitosis. Immunology. 1989 Feb;66(2):213–218. [PMC free article] [PubMed] [Google Scholar]
  5. Billingham M. E., Cary N. R., Hammond M. E., Kemnitz J., Marboe C., McCallister H. A., Snovar D. C., Winters G. L., Zerbe A. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990 Nov-Dec;9(6):587–593. [PubMed] [Google Scholar]
  6. Billingham M. E. Some recent advances in cardiac pathology. Hum Pathol. 1979 Jul;10(4):367–386. doi: 10.1016/s0046-8177(79)80043-x. [DOI] [PubMed] [Google Scholar]
  7. Caves P. K., Stinson E. B., Billingham M. E., Shumway N. E. Serial transvenous biopsy of the transplanted human heart. Improved management of acute rejection episodes. Lancet. 1974 May 4;1(7862):821–826. doi: 10.1016/s0140-6736(74)90480-2. [DOI] [PubMed] [Google Scholar]
  8. Damle N. K., Eberhardt C., Van der Vieren M. Direct interaction with primed CD4+ CD45R0+ memory T lymphocytes induces expression of endothelial leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of vascular endothelial cells. Eur J Immunol. 1991 Dec;21(12):2915–2923. doi: 10.1002/eji.1830211204. [DOI] [PubMed] [Google Scholar]
  9. Hammond E. H., Yowell R. L., Nunoda S., Menlove R. L., Renlund D. G., Bristow M. R., Gay W. A., Jr, Jones K. W., O'Connell J. B. Vascular (humoral) rejection in heart transplantation: pathologic observations and clinical implications. J Heart Transplant. 1989 Nov-Dec;8(6):430–443. [PubMed] [Google Scholar]
  10. Hoshinaga K., Mohanakumar T., Goldman M. H., Wolfgang T. C., Szentpetery S., Lee H. M., Lower R. R. Clinical significance of in situ detection of T lymphocyte subsets and monocyte/macrophage lineages in heart allografts. Transplantation. 1984 Dec;38(6):634–637. doi: 10.1097/00007890-198412000-00017. [DOI] [PubMed] [Google Scholar]
  11. Ibrahim S., Dawson D. V., Elmohsen M. A., Elsamannoudy F. A., Sanfilippo F. Differential expression of T-cell receptor-V region determinants on infiltrating T cells in rejecting and nonrejecting human kidney, liver, and heart allografts. Transplant Proc. 1993 Feb;25(1 Pt 1):80–83. [PubMed] [Google Scholar]
  12. Jutte N. H., Hesse C. J., Balk A. H., Mochtar B., Weimar W. Sequential measurements of soluble interleukin 2 receptor levels in plasma of heart transplant recipients. Transplantation. 1990 Aug;50(2):328–330. [PubMed] [Google Scholar]
  13. Kemnitz J., Cohnert T., Schäfers H. J., Helmke M., Wahlers T., Herrmann G., Schmidt R. M., Haverich A. A classification of cardiac allograft rejection. A modification of the classification by Billingham. Am J Surg Pathol. 1987 Jul;11(7):503–515. doi: 10.1097/00000478-198707000-00002. [DOI] [PubMed] [Google Scholar]
  14. Kolbeck P. C., Scheinman J. I., Sanfilippo F. Acute cellular rejection and cyclosporine nephrotoxicity monitored by biopsy in a renal allograft recipient. The differentiation of drug nephrotoxicity from rejection by phenotyping of cellular infiltrates. Arch Pathol Lab Med. 1986 May;110(5):389–393. [PubMed] [Google Scholar]
  15. Kolbeck P. C., Steenbergen C., Wolfe J. A., Sanfilippo F., Jennings R. B. The correlation of mononuclear cell phenotype in endomyocardial biopsies with clinical history and cardiac dysfunction. Am J Clin Pathol. 1989 Jan;91(1):37–44. doi: 10.1093/ajcp/91.1.37. [DOI] [PubMed] [Google Scholar]
  16. Kolbeck P. C., Tatum A. H., Sanfilippo F. Relationships among the histologic pattern, intensity, and phenotypes of T cells infiltrating renal allografts. Transplantation. 1984 Dec;38(6):709–713. doi: 10.1097/00007890-198412000-00032. [DOI] [PubMed] [Google Scholar]
  17. Lee W. T., Vitetta E. S. Changes in expression of CD45R during the development of Th1 and Th2 cell lines. Eur J Immunol. 1992 Jun;22(6):1455–1459. doi: 10.1002/eji.1830220618. [DOI] [PubMed] [Google Scholar]
  18. Lee W. T., Vitetta E. S. Limiting dilution analysis of CD45Rhi and CD45Rlo T cells: further evidence that CD45Rlo cells are memory cells. Cell Immunol. 1990 Oct 15;130(2):459–471. doi: 10.1016/0008-8749(90)90287-2. [DOI] [PubMed] [Google Scholar]
  19. Lee W. T., Yin X. M., Vitetta E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol. 1990 May 1;144(9):3288–3295. [PubMed] [Google Scholar]
  20. Luqman M., Johnson P., Trowbridge I., Bottomly K. Differential expression of the alternatively spliced exons of murine CD45 in Th1 and Th2 cell clones. Eur J Immunol. 1991 Jan;21(1):17–22. doi: 10.1002/eji.1830210104. [DOI] [PubMed] [Google Scholar]
  21. Mason D., Powrie F. Memory CD4+ T cells in man form two distinct subpopulations, defined by their expression of isoforms of the leucocyte common antigen, CD45. Immunology. 1990 Aug;70(4):427–433. [PMC free article] [PubMed] [Google Scholar]
  22. McAllister H. A., Jr, Schnee M. J., Radovancević B., Frazier O. H. A system for grading cardiac allograft rejection. Tex Heart Inst J. 1986 Mar;13(1):1–3. [PMC free article] [PubMed] [Google Scholar]
  23. Merkenschlager M., Beverley P. C. Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45RO (UCHL1). Int Immunol. 1989;1(4):450–459. doi: 10.1093/intimm/1.4.450. [DOI] [PubMed] [Google Scholar]
  24. Merkenschlager M., Terry L., Edwards R., Beverley P. C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. doi: 10.1002/eji.1830181102. [DOI] [PubMed] [Google Scholar]
  25. Meuer S. C., Schlossman S. F., Reinherz E. L. Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4395–4399. doi: 10.1073/pnas.79.14.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  27. Platt J. L., LeBien T. W., Michael A. F. Interstitial mononuclear cell populations in renal graft rejection. Identification by monoclonal antibodies in tissue sections. J Exp Med. 1982 Jan 1;155(1):17–30. doi: 10.1084/jem.155.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roodman S. T., Miller L. W., Tsai C. C. Role of interleukin 2 receptors in immunologic monitoring following cardiac transplantation. Transplantation. 1988 Jun;45(6):1050–1056. doi: 10.1097/00007890-198806000-00010. [DOI] [PubMed] [Google Scholar]
  29. Rose M. L., Gracie J. A., Fraser A., Chisholm P. M., Yacoub M. H. Use of monoclonal antibodies to quantitate T lymphocyte subpopulations in human cardiac allografts. Transplantation. 1984 Sep;38(3):230–234. doi: 10.1097/00007890-198409000-00007. [DOI] [PubMed] [Google Scholar]
  30. Sako H., Nakane Y., Okino K., Nishihara K., Kodama M., Paku K., Takayama H., Tomoyoshi T., Kawata M., Yamada H. Immunohistochemical study of the cells infiltrating human renal allografts by the ABC and the IGSS method using monoclonal antibodies. Transplantation. 1987 Jul;44(1):43–50. doi: 10.1097/00007890-198707000-00011. [DOI] [PubMed] [Google Scholar]
  31. Sanfilippo F., Kolbeck P. C., Vaughn W. K., Bollinger R. R. Renal allograft cell infiltrates associated with irreversible rejection. Transplantation. 1985 Dec;40(6):679–685. doi: 10.1097/00007890-198512000-00022. [DOI] [PubMed] [Google Scholar]
  32. Stein-Oakley A. N., Kerr P. G., Kraft N. E., Atkins R. C., Thomson N. M. Phenotypic definition of primed T cells in human renal allografts. Use of the CD45R marker. Transplantation. 1989 Nov;48(5):787–790. doi: 10.1097/00007890-198911000-00012. [DOI] [PubMed] [Google Scholar]
  33. Suitters A. J., Rose M. L., Dominguez M. J., Yacoub M. H. Selection for donor-specific cytotoxic T lymphocytes within the allografted human heart. Transplantation. 1990 Jun;49(6):1105–1109. doi: 10.1097/00007890-199006000-00015. [DOI] [PubMed] [Google Scholar]
  34. Thomas M. L. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  35. Vaessen L. M., Baan C. C., Ouwehand A. J., Jutte N. H., Balk A. H., Mochtar B., Claas F. H., Weimar W. Acute rejection in heart transplant patients is associated with the presence of committed donor-specific cytotoxic lymphocytes in the graft but not in the blood. Clin Exp Immunol. 1992 May;88(2):213–219. doi: 10.1111/j.1365-2249.1992.tb03064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weintraub D., Masek M., Billingham M. E. The lymphocyte subpopulations in cyclosporine-treated human heart rejection. J Heart Transplant. 1985 Feb;4(2):213–216. [PubMed] [Google Scholar]
  37. Yamashita N., Clement L. T. Phenotypic characterization of the post-thymic differentiation of human alloantigen-specific CD8+ cytotoxic T lymphocytes. J Immunol. 1989 Sep 1;143(5):1518–1523. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES