Abstract
Two hundred ninety-nine paraffin-embedded coronary artery blocks from 68 autopsy cases were serially sectioned. The blocks were selected to provide a range from normal through various stages of atherosclerosis, and sections were examined with the indirect immunofluorescence technique for intramural distribution of plasma albumin, fibrinogen, and immunoglobulin gamma (IgG). Cryostat-sections of 44 blocks from 22 of the same cases were examined with the same technique for distribution of apolipoprotein B. Alteration of protein insudation in the artery wall was a sensitive index of coronary atherogenesis. The sequence in which these proteins were involved in the initiation and development of early atherosclerotic lesions was analyzed by determining the average relative intimal thickness and relative lumen size that was associated with the first occurrence of altered insudation of each of these proteins. Results indicate that changed plasma albumin insudation is the earliest sign of a focal intimal lesion, and increasing albumin insudation shows the strongest association with intimal plaque growth. The other proteins tested showed altered insudation, in the order IgG, fibrinogen, apolipoprotein B. The results indicate that a progressive increase in permeability of the coronary artery endothelium occurs in the early stages of atherogenesis. Patterns of IgG localization provide evidence of both early systemic and subsequent local immune reactions being involved in atherogenesis. Altered albumin and apolipoprotein B insudation levels have stronger correlation coefficients with relative intimal thickness and relative lumen size than do those IgG and fibrinogen. The extremely high correlation coefficients shown by albumin emphasizes the importance of edema in determining plaque size and lumen stenosis.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams C. W., Bayliss O. B., Morgan R. S. Permeability in atherosclerosis: fluorescence test in green light with trypan blue. Atherosclerosis. 1977 Jul;27(3):353–359. doi: 10.1016/0021-9150(77)90045-4. [DOI] [PubMed] [Google Scholar]
- BLUMBERG B. S., RIDDELL N. M. Inherited antigenic differences in human serum beta lipoproteins. A second antiserum. J Clin Invest. 1963 Jun;42:867–875. doi: 10.1172/JCI104779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell F. P., Adamson I. L., Schwartz C. J. Aortic endothelial permeability to albumin: focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exp Mol Pathol. 1974 Feb;20(1):57–68. doi: 10.1016/0014-4800(74)90043-4. [DOI] [PubMed] [Google Scholar]
- Cliff W. J., Schoefl G. I. Pathological vascularization of the coronary intima. Ciba Found Symp. 1983;100:207–221. doi: 10.1002/9780470720813.ch12. [DOI] [PubMed] [Google Scholar]
- DIXON F. J., VAZQUEZ J. J., WEIGLE W. O., COCHRANE C. G. Pathogenesis of serum sickness. AMA Arch Pathol. 1958 Jan;65(1):18–28. [PubMed] [Google Scholar]
- DUGUID J. B. Mural thrombosis in arteries. Br Med Bull. 1955;11(1):36–38. doi: 10.1093/oxfordjournals.bmb.a069442. [DOI] [PubMed] [Google Scholar]
- DUNCAN L. E., Jr, BUCK K. Passage of labeled cholesterol into the aortic wall of the normal dog. Circ Res. 1959 Sep;7:765–770. doi: 10.1161/01.res.7.5.765. [DOI] [PubMed] [Google Scholar]
- Emeson E. E., Robertson A. L., Jr T lymphocytes in aortic and coronary intimas. Their potential role in atherogenesis. Am J Pathol. 1988 Feb;130(2):369–376. [PMC free article] [PubMed] [Google Scholar]
- GEIRINGER E. Intimal vascularization and atherosclerosis. J Pathol Bacteriol. 1951 Apr;63(2):201–211. doi: 10.1002/path.1700630204. [DOI] [PubMed] [Google Scholar]
- GILLMAN T. Reduplication, remodeling, regeneration, repair, and degeneration of arterial elastic membranes; some implications for the pathogenesis of arterial diseases. AMA Arch Pathol. 1959 Jun;67(6):624–642. [PubMed] [Google Scholar]
- GRESHAM G. A., HOWARD A. N., KING A. J. A comparative histopathological study of the early atherosclerotic lesion. Br J Exp Pathol. 1962 Feb;43:21–23. [PMC free article] [PubMed] [Google Scholar]
- Gray M. V., Hill J. D., Mitchell J. R. Immune mechanisms in patients with proven vascular disease. Atherosclerosis. 1978 Nov;31(3):377–381. doi: 10.1016/0021-9150(78)90073-4. [DOI] [PubMed] [Google Scholar]
- Greenway C. V., Stark R. D. Hepatic vascular bed. Physiol Rev. 1971 Jan;51(1):23–65. doi: 10.1152/physrev.1971.51.1.23. [DOI] [PubMed] [Google Scholar]
- Gresham G. A. Early events in atherogenesis. Lancet. 1975 Mar 15;1(7907):614–615. doi: 10.1016/s0140-6736(75)91889-9. [DOI] [PubMed] [Google Scholar]
- Hansson G. K., Bondjers G., Bylock A., Hjalmarsson L. Ultrastructural studies on the localization of IgG in the aortic endothelium and subendothelial intima of atherosclerotic and nonatherosclerotic rabbits. Exp Mol Pathol. 1980 Dec;33(3):302–315. doi: 10.1016/0014-4800(80)90028-3. [DOI] [PubMed] [Google Scholar]
- Hoff H. F., Titus J. L., Bajardo R. J., Jackson R. L., Gotto A. M., DeBakey M. E., Lie J. T. Lipoproteins in atherosclerotic lesions. Localization by immunofluorescence of apo-low density lipoproteins in human atherosclerotic arteries from normal and hyperlipoproteinemics. Arch Pathol. 1975 May;99(5):253–258. [PubMed] [Google Scholar]
- Hollander W., Colombo M. A., Kirkpatrick B., Paddock J. Soluble proteins in the human atherosclerotic plaque. With spectral reference to immunoglobulins, C3-complement component, alpha 1-antitrypsin and alpha 2-macroglobulin. Atherosclerosis. 1979 Dec;34(4):391–405. doi: 10.1016/0021-9150(79)90064-9. [DOI] [PubMed] [Google Scholar]
- Hollander W., Colombo M. A., Kramsch D. M., Kirkpatrick B. Immunologial aspects of atherosclerosis. Adv Cardiol. 1974;13:192–207. doi: 10.1159/000395538. [DOI] [PubMed] [Google Scholar]
- Hollander W., Kramsch D. M. The distribution of intravenously administered [3H] cholesterol in the arteries and other tissues. 1. Tissue fractionation findings. J Atheroscler Res. 1967 Jul-Aug;7(4):491–500. doi: 10.1016/s0368-1319(67)80026-7. [DOI] [PubMed] [Google Scholar]
- Hollander W., Paddock J., Colombo M. A. Arterial uptake and synthesis of low density lipoproteins. Prog Biochem Pharmacol. 1977;13:123–133. [PubMed] [Google Scholar]
- Hollander W. Unified concept on the role of acid mucopolysaccharides and connective tissue proteins in the accumulation of lipids, lipoproteins, and calcium in the atherosclerotic plaque. Exp Mol Pathol. 1976 Aug;25(1):106–120. doi: 10.1016/0014-4800(76)90021-6. [DOI] [PubMed] [Google Scholar]
- Huang S. N., Minassian H., More J. D. Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Invest. 1976 Oct;35(4):383–390. [PubMed] [Google Scholar]
- Klurfeld D. M., Weber M. M., Levine E. M., Mueller S. N., Kritchevsky D. Increased atherosclerosis in rabbits immunized with endothelial cells. Atherosclerosis. 1985 Jun;55(3):283–297. doi: 10.1016/0021-9150(85)90107-8. [DOI] [PubMed] [Google Scholar]
- Kovanen P. T. Atheroma formation: defective control in the intimal round-trip of cholesterol. Eur Heart J. 1990 Aug;11 (Suppl E):238–246. doi: 10.1093/eurheartj/11.suppl_e.238. [DOI] [PubMed] [Google Scholar]
- LIBRETTI A., GOLDIN M., KAPLAN M. A. Immunologic relationships of C-reactive protein from various human pathologic conditions. J Immunol. 1957 Oct;79(4):306–311. [PubMed] [Google Scholar]
- Michaeli D., Martin G. R., Kettman J., Benjamini E., Leung D. Y., Blatt B. A. Localization of antigenic determinants in the polypeptide chains of collagen. Science. 1969 Dec 19;166(3912):1522–1524. doi: 10.1126/science.166.3912.1522. [DOI] [PubMed] [Google Scholar]
- Mora R., Lupu F., Simionescu N. Cytochemical localization of beta-lipoproteins and their components in successive stages of hyperlipidemic atherogenesis of rabbit aorta. Atherosclerosis. 1989 Oct;79(2-3):183–195. doi: 10.1016/0021-9150(89)90123-8. [DOI] [PubMed] [Google Scholar]
- Parums D. V., Chadwick D. R., Mitchinson M. J. The localisation of immunoglobulin in chronic periaortitis. Atherosclerosis. 1986 Aug;61(2):117–123. doi: 10.1016/0021-9150(86)90070-5. [DOI] [PubMed] [Google Scholar]
- Parums D., Mitchinson M. J. Demonstration of immunoglobulin in the neighbourhood of advanced atherosclerotic plaques. Atherosclerosis. 1981 Jan-Feb;38(1-2):211–216. doi: 10.1016/0021-9150(81)90118-0. [DOI] [PubMed] [Google Scholar]
- Reynolds G. D., Vance R. P. C-reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med. 1987 Mar;111(3):265–269. [PubMed] [Google Scholar]
- Rowe I. F., Soutar A. K., Trayner I. M., Baltz M. L., de Beer F. C., Walker L., Bowyer D., Herbert J., Feinstein A., Pepys M. B. Rabbit and rat C-reactive proteins bind apolipoprotein B-containing lipoproteins. J Exp Med. 1984 Feb 1;159(2):604–616. doi: 10.1084/jem.159.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe I. F., Soutar A. K., Trayner I. M., Thompson G. R., Pepys M. B. Circulating human C-reactive protein binds very low density lipoproteins. Clin Exp Immunol. 1984 Oct;58(1):237–244. [PMC free article] [PubMed] [Google Scholar]
- SCHWARTZ C. J., MITCHELL J. R. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation. 1962 Jul;26:73–78. doi: 10.1161/01.cir.26.1.73. [DOI] [PubMed] [Google Scholar]
- Schwartz C. J., Valente A. J., Kelley J. L., Sprague E. A., Edwards E. H. Thrombosis and the development of atherosclerosis: Rokitansky revisited. Semin Thromb Hemost. 1988 Apr;14(2):189–195. doi: 10.1055/s-2007-1002775. [DOI] [PubMed] [Google Scholar]
- Scott P. J., Hurley P. J. The distribution of radio-iodinated serum albumin and low-density lipoprotein in tissues and the arterial wall. Atherosclerosis. 1970 Jan-Feb;11(1):77–103. doi: 10.1016/0021-9150(70)90008-0. [DOI] [PubMed] [Google Scholar]
- Smith E. B. The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res. 1974;12(0):1–49. doi: 10.1016/b978-0-12-024912-1.50008-9. [DOI] [PubMed] [Google Scholar]
- Smith E. B. Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur Heart J. 1990 Aug;11 (Suppl E):72–81. doi: 10.1093/eurheartj/11.suppl_e.72. [DOI] [PubMed] [Google Scholar]
- WARD P. A., COCHRANE C. G. BOUND COMPLEMENT AND IMMUNOLOGIC INJURY OF BLOOD VESSELS. J Exp Med. 1965 Feb 1;121:215–234. doi: 10.1084/jem.121.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEXLER B. C., TRUE C. W. Carotid and cerebral arteriosclerosis in the rat. Circ Res. 1963 Jun;12:659–666. doi: 10.1161/01.res.12.6.659. [DOI] [PubMed] [Google Scholar]
- WOOLF N. The distribution of fibrin within the aortic intima. An immunohistochemical study. Am J Pathol. 1961 Nov;39:521–532. [PMC free article] [PubMed] [Google Scholar]
- Williams F. M., Collins P. D., Tannière-Zeller M., Williams T. J. The relationship between neutrophils and increased microvascular permeability in a model of myocardial ischaemia and reperfusion in the rabbit. Br J Pharmacol. 1990 Aug;100(4):729–734. doi: 10.1111/j.1476-5381.1990.tb14083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashiroya H. M., Ghosh L., Yang R., Robertson A. L., Jr Herpesviridae in the coronary arteries and aorta of young trauma victims. Am J Pathol. 1988 Jan;130(1):71–79. [PMC free article] [PubMed] [Google Scholar]