Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Feb;69(2):1328–1333. doi: 10.1128/jvi.69.2.1328-1333.1995

Potential role of natural killer cells in controlling tumorigenesis by human T-cell leukemia viruses.

G Feuer 1, S A Stewart 1, S M Baird 1, F Lee 1, R Feuer 1, I S Chen 1
PMCID: PMC188715  PMID: 7815516

Abstract

Human T-cell leukemia virus (HTLV) is the etiologic agent of adult T-cell leukemia (ATL), a malignancy of T lymphocytes that is characterized by a long latency period after virus exposure. Intraperitoneal inoculation of severe combined immunodeficient (SCID) mice with HTLV-transformed cell lines and ATL tumor cells was employed to investigate the tumorigenic potential of HTLV type I (HTLV-I)-infected cells. In contrast to inoculation of ATL (RV-ATL) cells into SCID mice, which resulted in the formation of lymphomas, inoculation of HTLV-I- and HTLV-II-transformed cell lines (SLB-I and JLB-II cells, respectively) did not result in tumor formation. Immunosuppression of SCID mice, either by whole-body irradiation or by treatment with an antiserum, anti-asialo GM1 (alpha-AGM1), which transiently abrogates natural killer cell activity in vivo, was necessary to establish the growth of tumors derived from HTLV-transformed cell lines. PCR and flow cytometric studies reveal that HTLV-I-transformed cells are eliminated from the peritoneal cavities of inoculated mice by 3 days postinoculation; in contrast, RV-ATL cells persist and are detected until the mice succumb to lymphoma development. The differing behaviors of HTLV-infected cell lines and ATL tumor cells in SCID mice suggest that ATL cells have a higher tumorigenic potential in vivo than do HTLV-infected cell lines because of their ability to evade natural killer cell-mediated cytolysis.

Full Text

The Full Text of this article is available as a PDF (224.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allavena P., Introna M., Mangioni C., Mantovani A. Inhibition of natural killer activity by tumor-associated lymphoid cells from ascites ovarian carcinomas. J Natl Cancer Inst. 1981 Aug;67(2):319–325. [PubMed] [Google Scholar]
  2. Anasetti C., Martin P. J., June C. H., Hellstrom K. E., Ledbetter J. A., Rabinovitch P. S., Morishita Y., Hellstrom I., Hansen J. A. Induction of calcium flux and enhancement of cytolytic activity in natural killer cells by cross-linking of the sheep erythrocyte binding protein (CD2) and the Fc-receptor (CD16). J Immunol. 1987 Sep 15;139(6):1772–1779. [PubMed] [Google Scholar]
  3. Bancroft G. J., Schreiber R. D., Unanue E. R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol Rev. 1991 Dec;124:5–24. doi: 10.1111/j.1600-065x.1991.tb00613.x. [DOI] [PubMed] [Google Scholar]
  4. Bancroft G. J., Shellam G. R., Chalmer J. E. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J Immunol. 1981 Mar;126(3):988–994. [PubMed] [Google Scholar]
  5. Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
  6. Brandt C. R., Salkowski C. A. Activation of NK cells in mice following corneal infection with herpes simplex virus type-1. Invest Ophthalmol Vis Sci. 1992 Jan;33(1):113–120. [PubMed] [Google Scholar]
  7. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
  8. Bukowski J. F., Woda B. A., Welsh R. M. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol. 1984 Oct;52(1):119–128. doi: 10.1128/jvi.52.1.119-128.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cavacini L. A., Giles-Komar J., Kennel M., Quinn A. Effect of immunosuppressive therapy on cytolytic activity of immunodeficient mice: implications for xenogeneic transplantation. Cell Immunol. 1992 Oct 15;144(2):296–310. doi: 10.1016/0008-8749(92)90246-l. [DOI] [PubMed] [Google Scholar]
  10. Cesano A., O'Connor R., Lange B., Finan J., Rovera G., Santoli D. Homing and progression patterns of childhood acute lymphoblastic leukemias in severe combined immunodeficiency mice. Blood. 1991 Jun 1;77(11):2463–2474. [PubMed] [Google Scholar]
  11. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  12. Eremin O., Coombs R. R., Ashby J. Lymphocytes infiltrating human breast cancers lack K-cell activity and show low levels of NK-cell activity. Br J Cancer. 1981 Aug;44(2):166–176. doi: 10.1038/bjc.1981.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feuer G., Chen I. S. Mechanisms of human T-cell leukemia virus-induced leukemogenesis. Biochim Biophys Acta. 1992 Dec 16;1114(2-3):223–233. doi: 10.1016/0304-419x(92)90017-s. [DOI] [PubMed] [Google Scholar]
  14. Feuer G., Zack J. A., Harrington W. J., Jr, Valderama R., Rosenblatt J. D., Wachsman W., Baird S. M., Chen I. S. Establishment of human T-cell leukemia virus type I T-cell lymphomas in severe combined immunodeficient mice. Blood. 1993 Aug 1;82(3):722–731. [PubMed] [Google Scholar]
  15. Fulop G. M., Phillips R. A. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients. J Immunol. 1986 Jun 15;136(12):4438–4443. [PubMed] [Google Scholar]
  16. Giguére V., Isobe K., Grosveld F. Structure of the murine Thy-1 gene. EMBO J. 1985 Aug;4(8):2017–2024. doi: 10.1002/j.1460-2075.1985.tb03886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorelik E., Herberman R. B. Depression of natural antitumor resistance of C57BL/6 mice by leukemogenic doses of radiation and restoration of resistance by transfer of bone marrow or spleen cells from normal, but not beige, syngeneic mice. J Natl Cancer Inst. 1982 Jul;69(1):89–93. [PubMed] [Google Scholar]
  18. Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
  19. Hattori T., Uchiyama T., Toibana T., Takatsuki K., Uchino H. Surface phenotype of Japanese adult T-cell leukemia cells characterized by monoclonal antibodies. Blood. 1981 Sep;58(3):645–647. [PubMed] [Google Scholar]
  20. Hill L. L., Perussia B., McCue P. A., Korngold R. Effect of human natural killer cells on the metastatic growth of human melanoma xenografts in mice with severe combined immunodeficiency. Cancer Res. 1994 Feb 1;54(3):763–770. [PubMed] [Google Scholar]
  21. Hochman P. S., Cudkowicz G., Dausset J. Decline of natural killer cell activity in sublethally irradiated mice. J Natl Cancer Inst. 1978 Jul;61(1):265–268. doi: 10.1093/jnci/61.1.265. [DOI] [PubMed] [Google Scholar]
  22. Holmberg L. A., Ault K. A. Characterization of natural killer cells induced in the peritoneal exudates of mice infected with Listeria monocytogenes: a study of their tumor target specificity and their expression of murine differentiation antigens and human NK-associated antigens. Cell Immunol. 1984 Nov;89(1):151–168. doi: 10.1016/0008-8749(84)90206-5. [DOI] [PubMed] [Google Scholar]
  23. Holmberg L. A., Springer T. A., Ault K. A. Natural killer activity in the peritoneal exudates of mice infected with Listeria monocytogenes: characterization of the natural killer cells by using a monoclonal rat anti-murine macrophage antibody (M1/70). J Immunol. 1981 Nov;127(5):1792–1799. [PubMed] [Google Scholar]
  24. Huang Y. W., Richardson J. A., Tong A. W., Zhang B. Q., Stone M. J., Vitetta E. S. Disseminated growth of a human multiple myeloma cell line in mice with severe combined immunodeficiency disease. Cancer Res. 1993 Mar 15;53(6):1392–1396. [PubMed] [Google Scholar]
  25. Kamel-Reid S., Letarte M., Doedens M., Greaves A., Murdoch B., Grunberger T., Lapidot T., Thorner P., Freedman M. H., Phillips R. A. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood. 1991 Dec 1;78(11):2973–2981. [PubMed] [Google Scholar]
  26. Kamel-Reid S., Letarte M., Sirard C., Doedens M., Grunberger T., Fulop G., Freedman M. H., Phillips R. A., Dick J. E. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science. 1989 Dec 22;246(4937):1597–1600. doi: 10.1126/science.2595371. [DOI] [PubMed] [Google Scholar]
  27. Karp S. E., Farber A., Salo J. C., Hwu P., Jaffe G., Asher A. L., Shiloni E., Restifo N. P., Mulé J. J., Rosenberg S. A. Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor. J Immunol. 1993 Feb 1;150(3):896–908. [PMC free article] [PubMed] [Google Scholar]
  28. Kasai M., Yoneda T., Habu S., Maruyama Y., Okumura K., Tokunaga T. In vivo effect of anti-asialo GM1 antibody on natural killer activity. Nature. 1981 May 28;291(5813):334–335. doi: 10.1038/291334a0. [DOI] [PubMed] [Google Scholar]
  29. Koeffler H. P., Chen I. S., Golde D. W. Characterization of a novel HTLV-infected cell line. Blood. 1984 Aug;64(2):482–490. [PubMed] [Google Scholar]
  30. Kondo A., Imada K., Hattori T., Yamabe H., Tanaka T., Miyasaka M., Okuma M., Uchiyama T. A model of in vivo cell proliferation of adult T-cell leukemia. Blood. 1993 Oct 15;82(8):2501–2509. [PubMed] [Google Scholar]
  31. Korber B., Okayama A., Donnelly R., Tachibana N., Essex M. Polymerase chain reaction analysis of defective human T-cell leukemia virus type I proviral genomes in leukemic cells of patients with adult T-cell leukemia. J Virol. 1991 Oct;65(10):5471–5476. doi: 10.1128/jvi.65.10.5471-5476.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., Minden M., Paterson B., Caligiuri M. A., Dick J. E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994 Feb 17;367(6464):645–648. doi: 10.1038/367645a0. [DOI] [PubMed] [Google Scholar]
  33. Lee H., Swanson P., Shorty V. S., Zack J. A., Rosenblatt J. D., Chen I. S. High rate of HTLV-II infection in seropositive i.v. drug abusers in New Orleans. Science. 1989 Apr 28;244(4903):471–475. doi: 10.1126/science.2655084. [DOI] [PubMed] [Google Scholar]
  34. Lo K. M., Vivier E., Rochet N., Dehni G., Levine H., Haseltine W. A., Anderson P. Infection of human natural killer (NK) cells with replication-defective human T cell leukemia virus type I provirus. Increased proliferative capacity and prolonged survival of functionally competent NK cells. J Immunol. 1992 Dec 15;149(12):4101–4108. [PubMed] [Google Scholar]
  35. Lotzová E., Savary C. A. Interleukin-2 corrects defective NK activity of patients with leukemia. Comp Immunol Microbiol Infect Dis. 1986;9(2-3):169–175. doi: 10.1016/0147-9571(86)90009-3. [DOI] [PubMed] [Google Scholar]
  36. McIntyre K. W., Welsh R. M. Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J Exp Med. 1986 Nov 1;164(5):1667–1681. doi: 10.1084/jem.164.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morimoto C., Matsuyama T., Oshige C., Tanaka H., Hercend T., Reinherz E. L., Schlossman S. F. Functional and phenotypic studies of Japanese adult T cell leukemia cells. J Clin Invest. 1985 Mar;75(3):836–843. doi: 10.1172/JCI111780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mosier D. E. Adoptive transfer of human lymphoid cells to severely immunodeficient mice: models for normal human immune function, autoimmunity, lymphomagenesis, and AIDS. Adv Immunol. 1991;50:303–325. doi: 10.1016/s0065-2776(08)60828-7. [DOI] [PubMed] [Google Scholar]
  39. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  40. Murphy W. J., Keller J. R., Harrison C. L., Young H. A., Longo D. L. Interleukin-2-activated natural killer cells can support hematopoiesis in vitro and promote marrow engraftment in vivo. Blood. 1992 Aug 1;80(3):670–677. [PubMed] [Google Scholar]
  41. Natuk R. J., Welsh R. M. Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol. 1987 Feb 1;138(3):877–883. [PubMed] [Google Scholar]
  42. Parkinson D. R., Brightman R. P., Waksal S. D. Altered natural killer cell biology in C57BL/6 mice after leukemogenic split-dose irradiation. J Immunol. 1981 Apr;126(4):1460–1464. [PubMed] [Google Scholar]
  43. Pollack S. B., Hallenbeck L. A. In vivo reduction of NK activity with anti-NK 1 serum: direct evaluation of NK cells in tumor clearance. Int J Cancer. 1982 Feb 15;29(2):203–207. doi: 10.1002/ijc.2910290215. [DOI] [PubMed] [Google Scholar]
  44. Riser B. L., Laybourn K. A., Varani J. Treatment of mice with anti-asialo-GM1 antibody or poly-I:C: effects on metastasis dissociable from modulation of macrophage antitumor activity. Nat Immun Cell Growth Regul. 1988;7(5-6):305–315. [PubMed] [Google Scholar]
  45. Rosenblatt J. D., Golde D. W., Wachsman W., Giorgi J. V., Jacobs A., Schmidt G. M., Quan S., Gasson J. C., Chen I. S. A second isolate of HTLV-II associated with atypical hairy-cell leukemia. N Engl J Med. 1986 Aug 7;315(6):372–377. doi: 10.1056/NEJM198608073150606. [DOI] [PubMed] [Google Scholar]
  46. Ruscetti F. W., Mikovits J. A., Kalyanaraman V. S., Overton R., Stevenson H., Stromberg K., Herberman R. B., Farrar W. L., Ortaldo J. R. Analysis of effector mechanisms against HTLV-I- and HTLV-III/LAV-infected lymphoid cells. J Immunol. 1986 May 15;136(10):3619–3624. [PubMed] [Google Scholar]
  47. Sawyers C. L., Gishizky M. L., Quan S., Golde D. W., Witte O. N. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood. 1992 Apr 15;79(8):2089–2098. [PubMed] [Google Scholar]
  48. Saxon A., Stevens R. H., Golde D. W. T-lymphocyte variant of hairy-cell leukemia. Ann Intern Med. 1978 Mar;88(3):323–326. doi: 10.7326/0003-4819-88-3-323. [DOI] [PubMed] [Google Scholar]
  49. Schuler W., Bosma M. J. Nature of the scid defect: a defective VDJ recombinase system. Curr Top Microbiol Immunol. 1989;152:55–62. doi: 10.1007/978-3-642-74974-2_8. [DOI] [PubMed] [Google Scholar]
  50. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5104–5108. doi: 10.1073/pnas.78.8.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  52. Taghian A., Budach W., Zietman A., Freeman J., Gioioso D., Ruka W., Suit H. D. Quantitative comparison between the transplantability of human and murine tumors into the subcutaneous tissue of NCr/Sed-nu/nu nude and severe combined immunodeficient mice. Cancer Res. 1993 Oct 15;53(20):5012–5017. [PubMed] [Google Scholar]
  53. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Trowbridge I. S., Omary M. B. Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac-1. J Exp Med. 1981 Nov 1;154(5):1517–1524. doi: 10.1084/jem.154.5.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tutt M. M., Schuler W., Kuziel W. A., Tucker P. W., Bennett M., Bosma M. J., Kumar V. T cell receptor genes do not rearrange or express functional transcripts in natural killer cells of scid mice. J Immunol. 1987 Apr 1;138(7):2338–2344. [PubMed] [Google Scholar]
  56. Uchiyama T., Yodoi J., Sagawa K., Takatsuki K., Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977 Sep;50(3):481–492. [PubMed] [Google Scholar]
  57. Ullberg M., Jondal M. Recycling and target binding capacity of human natural killer cells. J Exp Med. 1981 Mar 1;153(3):615–628. doi: 10.1084/jem.153.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vargas-Cortes M., O'Donnell C. L., Maciaszek J. W., Welsh R. M. Generation of "natural killer cell-escape" variants of Pichinde virus during acute and persistent infections. J Virol. 1992 Apr;66(4):2532–2535. doi: 10.1128/jvi.66.4.2532-2535.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Waller E. K., Kamel O. W., Cleary M. L., Majumdar A. S., Schick M. R., Lieberman M., Weissman I. L. Growth of primary T-cell non-Hodgkin's lymphomata in SCID-hu mice: requirement for a human lymphoid microenvironment. Blood. 1991 Nov 15;78(10):2650–2665. [PubMed] [Google Scholar]
  60. Welsh R. M., Brubaker J. O., Vargas-Cortes M., O'Donnell C. L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med. 1991 May 1;173(5):1053–1063. doi: 10.1084/jem.173.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Welsh R. M., Dundon P. L., Eynon E. E., Brubaker J. O., Koo G. C., O'Donnell C. L. Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK 1.1). Nat Immun Cell Growth Regul. 1990;9(2):112–120. [PubMed] [Google Scholar]
  62. Welsh R. M. Regulation of virus infections by natural killer cells. A review. Nat Immun Cell Growth Regul. 1986;5(4):169–199. [PubMed] [Google Scholar]
  63. Yagita H., Nakamura T., Karasuyama H., Okumura K. Monoclonal antibodies specific for murine CD2 reveal its presence on B as well as T cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):645–649. doi: 10.1073/pnas.86.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Young M. R., Wheeler E., Newby M. Macrophage-mediated suppression of natural killer cell activity in mice bearing Lewis lung carcinoma. J Natl Cancer Inst. 1986 Apr;76(4):745–750. doi: 10.1093/jnci/76.4.745. [DOI] [PubMed] [Google Scholar]
  65. Yu F., Itoyama Y., Fujihara K., Goto I. Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesis-decrease in NK cell subset populations and activity in HTLV-I seropositive individuals. J Neuroimmunol. 1991 Aug;33(2):121–128. doi: 10.1016/0165-5728(91)90056-d. [DOI] [PubMed] [Google Scholar]
  66. Zack J. A., Haislip A. M., Krogstad P., Chen I. S. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol. 1992 Mar;66(3):1717–1725. doi: 10.1128/jvi.66.3.1717-1725.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES