Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1993 Nov;143(5):1498–1508.

Effect of thrombin on maturing human megakaryocytes.

E M Cramer 1, J M Massé 1, J P Caen 1, I Garcia 1, J Breton-Gorius 1, N Debili 1, W Vainchenker 1
PMCID: PMC1887177  PMID: 8238263

Abstract

Thrombin causes platelet activation and secretion. In some nucleated cells, it is mitogenic. In this study, we have investigated how human megakaryocytes (MKs) respond to this agonist and whether the response depends on the maturation stage. MKs were cultured from bone marrow precursors in liquid culture in the presence of normal plasma. To determine whether thrombin can activate MKs, 14-day MK cultures were incubated with thrombin for 5 minutes, and cells were studied by electron microscopy, either by standard techniques or after embedding in glycol-methacrylate for immunoelectron microscopy. Ultrastructural examination of thrombin-treated MKs revealed dramatic morphological changes reminiscent of those found in platelets, including shape change and organelle centralization that involved immature as well as mature cells. MKs were also able to secrete alpha-granule proteins in the dilated cisternae of the demarcation membrane system, as shown by immunogold staining for thrombospondin and glycoprotein Ib. These changes were rapid (less than 5 minutes) but despite them, MKs remained viable for more than 24 hours. To determine whether thrombin has a mitogenic activity, it was added to the culture of MKs from day 3 to day 10 of culture at concentrations varying from 0.1 to 10 U/ml. Cells were subsequently studied by a double staining technique using flow cytometry to determine MK number and ploidy. No changes were observed in these two parameters, showing that thrombin is not mitogenic for MKs at the concentrations used. In conclusion, this study confirms for human MKs previous observations made about guinea pig MKs (Fedorko et al, Lab Invest 1977, 36:32). In addition, it demonstrates that immature MKs are able to respond to thrombin and that more mature cells can secrete alpha-granule proteins into the demarcation membrane system, which is in continuity with the extracellular space. This phenomenon may have implications for pathological states such as myelofibrosis formation and for megakaryopoiesis autocrine regulation.

Full text

PDF
1498

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Shavit R., Kahn A., Wilner G. D., Fenton J. W., 2nd Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science. 1983 May 13;220(4598):728–731. doi: 10.1126/science.6836310. [DOI] [PubMed] [Google Scholar]
  2. Berk B. C., Taubman M. B., Cragoe E. J., Jr, Fenton J. W., 2nd, Griendling K. K. Thrombin signal transduction mechanisms in rat vascular smooth muscle cells. Calcium and protein kinase C-dependent and -independent pathways. J Biol Chem. 1990 Oct 5;265(28):17334–17340. [PubMed] [Google Scholar]
  3. Breton-Gorius J. Phenotypes of blasts in acute erythroblastic and megakaryoblastic leukemia--review. Keio J Med. 1987 Jan;36(1):23–45. doi: 10.2302/kjm.36.23. [DOI] [PubMed] [Google Scholar]
  4. Breton-Gorius J., Vainchenker W. Expression of platelet proteins during the in vitro and in vivo differentiation of megakaryocytes and morphological aspects of their maturation. Semin Hematol. 1986 Jan;23(1):43–67. [PubMed] [Google Scholar]
  5. Carney D. H., Scott D. L., Gordon E. A., LaBelle E. F. Phosphoinositides in mitogenesis: neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Cell. 1985 Sep;42(2):479–488. doi: 10.1016/0092-8674(85)90105-9. [DOI] [PubMed] [Google Scholar]
  6. Castro-Malaspina H., Rabellino E. M., Yen A., Nachman R. L., Moore M. A. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood. 1981 Apr;57(4):781–787. [PubMed] [Google Scholar]
  7. Chambard J. C., Paris S., L'Allemain G., Pouysségur J. Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature. 1987 Apr 23;326(6115):800–803. doi: 10.1038/326800a0. [DOI] [PubMed] [Google Scholar]
  8. Chen L. B., Buchanan J. M. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):131–135. doi: 10.1073/pnas.72.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen L. B., Teng N. N., Buchanan J. M. Mitogenicity of thrombin and surface alterations on mouse splenocytes. Exp Cell Res. 1976 Aug;101(1):41–46. doi: 10.1016/0014-4827(76)90409-2. [DOI] [PubMed] [Google Scholar]
  10. Cramer E. M., Debili N., Martin J. F., Gladwin A. M., Breton-Gorius J., Harrison P., Savidge G. F., Vainchenker W. Uncoordinated expression of fibrinogen compared with thrombospondin and von Willebrand factor in maturing human megakaryocytes. Blood. 1989 Apr;73(5):1123–1129. [PubMed] [Google Scholar]
  11. Cramer E. M., Lu H., Caen J. P., Soria C., Berndt M. C., Tenza D. Differential redistribution of platelet glycoproteins Ib and IIb-IIIa after plasmin stimulation. Blood. 1991 Feb 15;77(4):694–699. [PubMed] [Google Scholar]
  12. Daniel T. O., Gibbs V. C., Milfay D. F., Garovoy M. R., Williams L. T. Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J Biol Chem. 1986 Jul 25;261(21):9579–9582. [PubMed] [Google Scholar]
  13. Daniel T. O., Gibbs V. C., Milfay D. F., Garovoy M. R., Williams L. T. Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J Biol Chem. 1986 Jul 25;261(21):9579–9582. [PubMed] [Google Scholar]
  14. Debili N., Hegyi E., Navarro S., Katz A., Mouthon M. A., Breton-Gorius J., Vainchenker W. In vitro effects of hematopoietic growth factors on the proliferation, endoreplication, and maturation of human megakaryocytes. Blood. 1991 Jun 1;77(11):2326–2338. [PubMed] [Google Scholar]
  15. Debili N., Kieffer N., Nakazawa M., Guichard J., Titeux M., Cramer E., Breton-Gorius J., Vainchenker W. Expression of platelet glycoprotein Ib by cultured human megakaryocytes: ultrastructural localization and biosynthesis. Blood. 1990 Jul 15;76(2):368–376. [PubMed] [Google Scholar]
  16. Fedorko M. E. The functional capacity of guinea pig megakaryocytes. I. Uptake of 3H-serotonin by megakaryocytes and their physiologic and morphologic response to stimuli for the platelet release reaction. Lab Invest. 1977 Mar;36(3):310–320. [PubMed] [Google Scholar]
  17. Fedorko M. E. The functional capacity of guinea pig megakaryocytes. II. The uptake of particles and macromolecules and the effect of rabbit antiguinea pig platelet antiserum. Lab Invest. 1977 Mar;36(3):321–328. [PubMed] [Google Scholar]
  18. Gewirtz A. M., Calabretta B., Rucinski B., Niewiarowski S., Xu W. Y. Inhibition of human megakaryocytopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 peptide. J Clin Invest. 1989 May;83(5):1477–1486. doi: 10.1172/JCI114041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gospodarowicz D., Brown K. D., Birdwell C. R., Zetter B. R. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J Cell Biol. 1978 Jun;77(3):774–788. doi: 10.1083/jcb.77.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Han Z. C., Bellucci S., Tenza D., Caen J. P. Negative regulation of human megakaryocytopoiesis by human platelet factor 4 and beta thromboglobulin: comparative analysis in bone marrow cultures from normal individuals and patients with essential thrombocythaemia and immune thrombocytopenic purpura. Br J Haematol. 1990 Apr;74(4):395–401. doi: 10.1111/j.1365-2141.1990.tb06325.x. [DOI] [PubMed] [Google Scholar]
  21. Hattori R., Hamilton K. K., Fugate R. D., McEver R. P., Sims P. J. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989 May 15;264(14):7768–7771. [PubMed] [Google Scholar]
  22. Kaufman R. M., Airo R., Pollack S., Crosby W. H. Circulating megakaryocytes and platelet release in the lung. Blood. 1965 Dec;26(6):720–731. [PubMed] [Google Scholar]
  23. Kimura A., Katoh O., Kuramoto A. Effects of platelet derived growth factor, epidermal growth factor and transforming growth factor-beta on the growth of human marrow fibroblasts. Br J Haematol. 1988 May;69(1):9–12. doi: 10.1111/j.1365-2141.1988.tb07595.x. [DOI] [PubMed] [Google Scholar]
  24. Kroll M. H., Schafer A. I. Biochemical mechanisms of platelet activation. Blood. 1989 Sep;74(4):1181–1195. [PubMed] [Google Scholar]
  25. Leven R. M., Nachmias V. T. Cultured megakaryocytes: changes in the cytoskeleton after ADP-induced spreading. J Cell Biol. 1982 Feb;92(2):313–323. doi: 10.1083/jcb.92.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Levine R. F., Eldor A., HyAm E., Gamliel H., Fuks Z., Vlodavsky I. Megakaryocyte interaction with subendothelial extracellular matrix is associated with adhesion, platelet-like shape change, and thromboxane A2 production. Blood. 1985 Sep;66(3):570–576. [PubMed] [Google Scholar]
  27. Lichtman M. A., Chamberlain J. K., Simon W., Santillo P. A. Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol. 1978;4(4):303–312. doi: 10.1002/ajh.2830040402. [DOI] [PubMed] [Google Scholar]
  28. Low D. A., Scott R. W., Baker J. B., Cunningham D. D. Cells regulate their mitogenic response to thrombin through release of protease nexin. Nature. 1982 Jul 29;298(5873):476–478. doi: 10.1038/298476a0. [DOI] [PubMed] [Google Scholar]
  29. Martin J. F., Slater D. N., Trowbridge E. A. Abnormal intrapulmonary platelet production: a possible cause of vascular and lung disease. Lancet. 1983 Apr 9;1(8328):793–796. doi: 10.1016/s0140-6736(83)91851-2. [DOI] [PubMed] [Google Scholar]
  30. McCarthy D. M. Annotation. Fibrosis of the bone marrow: content and causes. Br J Haematol. 1985 Jan;59(1):1–7. doi: 10.1111/j.1365-2141.1985.tb02956.x. [DOI] [PubMed] [Google Scholar]
  31. Miller J. L. Characterization of the megakaryocyte secretory response: studies of continuously monitored release of endogenous ATP. Blood. 1983 May;61(5):967–972. [PubMed] [Google Scholar]
  32. Mitjavila M. T., Vinci G., Villeval J. L., Kieffer N., Henri A., Testa U., Breton-Gorius J., Vainchenker W. Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony formation: its relationship to type beta transforming growth factor (TGF-beta). J Cell Physiol. 1988 Jan;134(1):93–100. doi: 10.1002/jcp.1041340111. [DOI] [PubMed] [Google Scholar]
  33. Nachmias V. T. Platelet and megakaryocyte shape change: triggered alterations in the cytoskeleton. Semin Hematol. 1983 Oct;20(4):261–281. [PubMed] [Google Scholar]
  34. Okumura T., Hasitz M., Jamieson G. A. Platelet glycocalicin. Interaction with thrombin and role as thrombin receptor of the platelet surface. J Biol Chem. 1978 May 25;253(10):3435–3443. [PubMed] [Google Scholar]
  35. Pedersen N. T. Occurrence of megakaryocytes in various vessels and their retention in the pulmonary capillaries in man. Scand J Haematol. 1978 Nov;21(5):369–375. doi: 10.1111/j.1600-0609.1978.tb00381.x. [DOI] [PubMed] [Google Scholar]
  36. Radley J. M., Hartshorn M. A., Green S. L. The response of megakaryocytes with processes to thrombin. Thromb Haemost. 1987 Aug 4;58(2):732–736. [PubMed] [Google Scholar]
  37. Seuwen K., Magnaldo I., Pouysségur J. Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature. 1988 Sep 15;335(6187):254–256. doi: 10.1038/335254a0. [DOI] [PubMed] [Google Scholar]
  38. Tavassoli M., Aoki M. Migration of entire megakaryocytes through the marrow--blood barrier. Br J Haematol. 1981 May;48(1):25–29. doi: 10.1111/j.1365-2141.1981.00025.x. [DOI] [PubMed] [Google Scholar]
  39. Vainchenker W., Bouguet J., Guichard J., Breton-Gorius J. Megakaryocyte colony formation from human bone marrow precursors. Blood. 1979 Oct;54(4):940–945. [PubMed] [Google Scholar]
  40. Vittet D., Mathieu M. N., Launay J. M., Chevillard C. Thrombin inhibits proliferation of the human megakaryoblastic MEG-01 cell line: a possible involvement of a cyclic-AMP dependent mechanism. J Cell Physiol. 1992 Jan;150(1):65–75. doi: 10.1002/jcp.1041500110. [DOI] [PubMed] [Google Scholar]
  41. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  42. Worthington R. E., Nakeff A. Thromboxane synthesis in megakaryocytes isolated by centrifugal elutriation. Blood. 1981 Jul;58(1):175–178. [PubMed] [Google Scholar]
  43. Zimmerman G. A., McIntyre T. M., Prescott S. M. Thrombin stimulates neutrophil adherence by an endothelial cell-dependent mechanism: characterization of the response and relationship to platelet-activating factor synthesis. Ann N Y Acad Sci. 1986;485:349–368. doi: 10.1111/j.1749-6632.1986.tb34596.x. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES