Abstract
Reactive changes occurring within lymph nodes draining the subcutaneous site of acute infection with maedi-visna virus (MVV) were studied, and the appearance of infected cells correlated with the immune response. Cells infected with virus were detected in the node by cocultivation from day 4 postinfection (p.i.), with maximum numbers being seen between days 7 and 14, but even then infected cells were rare, with a maximum frequency of 23 50% tissue culture infective doses (TCID50) in 10(6) lymph node cells. At later times, infected cells were still detected, but their numbers fell to 1 to 2 TCID50 per 10(6) cells. Virus-specific CD8+ cytotoxic T-cell precursors (CTLp) were isolated from infected nodes from day 10 p.i. onwards, and T-cell proliferative responses to MVV were first detected on day 7 and consistently detected after day 18. Histological analysis showed a vigorous immune response in the node. There was a marked blast reaction in the T-cell-rich zones, which was greatest at the time when the number of virally infected cells was at its height. At this stage, large numbers of plasma cells were seen in the medullary cords, indicating that extensive T-cell-dependent B-cell activation was occurring in the T-cell-rich zones. Germinal centers were prominent shortly after the onset of the T-zone response and were still present at 40 days p.i. Phenotype studies of isolated lymph node cells failed to detect major changes in the proportion or phenotype of macrophages, CD1+ interdigitating cells, and CD4+ or CD8+ T cells despite the fact that CD8+ lymphoblasts form a major population leaving the node in efferent lymph. This suggests that there is a balanced increase in the number of all cell types in response to the virus within the node and selective migration of CD8+ lymphoblasts containing virus-specific CTLp from the node. Virus-specific immune responses are therefore present within the node when infectious virus isolation is maximal, but cellular immunity may act to control the level of infection from day 18 onwards.
Full Text
The Full Text of this article is available as a PDF (794.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan W., Tabi Z., Cleary A., Doherty P. C. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol. 1990 May 15;144(10):3980–3986. [PubMed] [Google Scholar]
- Baenziger J., Hengartner H., Zinkernagel R. M., Cole G. A. Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol. 1986 Apr;16(4):387–393. doi: 10.1002/eji.1830160413. [DOI] [PubMed] [Google Scholar]
- Beebe A. M., Dua N., Faith T. G., Moore P. F., Pedersen N. C., Dandekar S. Primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets. J Virol. 1994 May;68(5):3080–3091. doi: 10.1128/jvi.68.5.3080-3091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird P., Blacklaws B., Reyburn H. T., Allen D., Hopkins J., Sargan D., McConnell I. Early events in immune evasion by the lentivirus maedi-visna occurring within infected lymphoid tissue. J Virol. 1993 Sep;67(9):5187–5197. doi: 10.1128/jvi.67.9.5187-5197.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blacklaws B. A., Bird P., Allen D., McConnell I. Circulating cytotoxic T lymphocyte precursors in maedi-visna virus-infected sheep. J Gen Virol. 1994 Jul;75(Pt 7):1589–1596. doi: 10.1099/0022-1317-75-7-1589. [DOI] [PubMed] [Google Scholar]
- Brahic M., Stowring L., Ventura P., Haase A. T. Gene expression in visna virus infection in sheep. Nature. 1981 Jul 16;292(5820):240–242. doi: 10.1038/292240a0. [DOI] [PubMed] [Google Scholar]
- Bujdoso R., Hopkins J., Dutia B. M., Young P., McConnell I. Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage. J Exp Med. 1989 Oct 1;170(4):1285–1301. doi: 10.1084/jem.170.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carding S. R., Allan W., McMickle A., Doherty P. C. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J Exp Med. 1993 Feb 1;177(2):475–482. doi: 10.1084/jem.177.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doherty P. C., Allan W., Eichelberger M., Carding S. R. Roles of alpha beta and gamma delta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10:123–151. doi: 10.1146/annurev.iy.10.040192.001011. [DOI] [PubMed] [Google Scholar]
- Dutia B. M., Hopkins J., Allington M. P., Bujdoso R., McConnell I. Characterization of monoclonal antibodies specific for alpha- and beta-chains of sheep MHC class II. Immunology. 1990 May;70(1):27–32. [PMC free article] [PubMed] [Google Scholar]
- Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362. doi: 10.1038/362359a0. [DOI] [PubMed] [Google Scholar]
- Fields B. N. AIDS: time to turn to basic science. Nature. 1994 May 12;369(6476):95–96. doi: 10.1038/369095a0. [DOI] [PubMed] [Google Scholar]
- Gendelman H. E., Narayan O., Molineaux S., Clements J. E., Ghotbi Z. Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7086–7090. doi: 10.1073/pnas.82.20.7086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gendelman H. E., Narayan O., Molineaux S., Clements J. E., Ghotbi Z. Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7086–7090. doi: 10.1073/pnas.82.20.7086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorrell M. D., Brandon M. R., Sheffer D., Adams R. J., Narayan O. Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes. J Virol. 1992 May;66(5):2679–2688. doi: 10.1128/jvi.66.5.2679-2688.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta V. K., McConnell I., Hopkins J. Reactivity of the CD11/CD18 workshop monoclonal antibodies in the sheep. Vet Immunol Immunopathol. 1993 Nov;39(1-3):93–102. doi: 10.1016/0165-2427(93)90168-4. [DOI] [PubMed] [Google Scholar]
- Haase A. T. Pathogenesis of lentivirus infections. Nature. 1986 Jul 10;322(6075):130–136. doi: 10.1038/322130a0. [DOI] [PubMed] [Google Scholar]
- Haase A. T., Stowring L., Narayan P., Griffin D., Price D. Slow persistent infection caused by visna virus: role of host restriction. Science. 1977 Jan 14;195(4274):175–177. doi: 10.1126/science.188133. [DOI] [PubMed] [Google Scholar]
- Ho F., Lortan J. E., MacLennan I. C., Khan M. Distinct short-lived and long-lived antibody-producing cell populations. Eur J Immunol. 1986 Oct;16(10):1297–1301. doi: 10.1002/eji.1830161018. [DOI] [PubMed] [Google Scholar]
- Jacobson E. B., Caporale L. H., Thorbecke G. J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell Immunol. 1974 Sep;13(3):416–430. doi: 10.1016/0008-8749(74)90261-5. [DOI] [PubMed] [Google Scholar]
- Kroese F. G., Wubbena A. S., Seijen H. G., Nieuwenhuis P. Germinal centers develop oligoclonally. Eur J Immunol. 1987 Jul;17(7):1069–1072. doi: 10.1002/eji.1830170726. [DOI] [PubMed] [Google Scholar]
- Leist T. P., Cobbold S. P., Waldmann H., Aguet M., Zinkernagel R. M. Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol. 1987 Apr 1;138(7):2278–2281. [PubMed] [Google Scholar]
- Liu Y. J., Zhang J., Lane P. J., Chan E. Y., MacLennan I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol. 1991 Dec;21(12):2951–2962. doi: 10.1002/eji.1830211209. [DOI] [PubMed] [Google Scholar]
- Mackay C. R., Hein W. R., Brown M. H., Matzinger P. Unusual expression of CD2 in sheep: implications for T cell interactions. Eur J Immunol. 1988 Nov;18(11):1681–1688. doi: 10.1002/eji.1830181105. [DOI] [PubMed] [Google Scholar]
- Mackay C. R., Marston W. L., Dudler L., Spertini O., Tedder T. F., Hein W. R. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur J Immunol. 1992 Apr;22(4):887–895. doi: 10.1002/eji.1830220402. [DOI] [PubMed] [Google Scholar]
- Maddox J. F., Mackay C. R., Brandon M. R. Surface antigens, SBU-T4 and SBU-T8, of sheep T lymphocyte subsets defined by monoclonal antibodies. Immunology. 1985 Aug;55(4):739–748. [PMC free article] [PubMed] [Google Scholar]
- Naessens J., Sileghem M., MacHugh N., Park Y. H., Davis W. C., Toye P. Selection of BoCD25 monoclonal antibodies by screening mouse L cells transfected with the bovine p55-interleukin-2 (IL-2) receptor gene. Immunology. 1992 Jun;76(2):305–309. [PMC free article] [PubMed] [Google Scholar]
- Narayan O., Wolinsky J. S., Clements J. E., Strandberg J. D., Griffin D. E., Cork L. C. Slow virus replication: the role of macrophages in the persistence and expression of visna viruses of sheep and goats. J Gen Virol. 1982 Apr;59(Pt 2):345–356. doi: 10.1099/0022-1317-59-2-345. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
- Reimann K. A., Tenner-Racz K., Racz P., Montefiori D. C., Yasutomi Y., Lin W., Ransil B. J., Letvin N. L. Immunopathogenic events in acute infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Virol. 1994 Apr;68(4):2362–2370. doi: 10.1128/jvi.68.4.2362-2370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyburn H. T., Roy D. J., Blacklaws B. A., Sargan D. R., Watt N. J., McConnell I. Characteristics of the T cell-mediated immune response to maedi-visna virus. Virology. 1992 Dec;191(2):1009–1012. doi: 10.1016/0042-6822(92)90282-t. [DOI] [PubMed] [Google Scholar]
- Ringler D. J., Wyand M. S., Walsh D. G., MacKey J. J., Chalifoux L. V., Popovic M., Minassian A. A., Sehgal P. K., Daniel M. D., Desrosiers R. C. Cellular localization of simian immunodeficiency virus in lymphoid tissues. I. Immunohistochemistry and electron microscopy. Am J Pathol. 1989 Feb;134(2):373–383. [PMC free article] [PubMed] [Google Scholar]
- Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. Nucleotide sequence of EV1, a British isolate of maedi-visna virus. J Gen Virol. 1991 Aug;72(Pt 8):1893–1903. doi: 10.1099/0022-1317-72-8-1893. [DOI] [PubMed] [Google Scholar]
- Watt N. J., MacIntyre N., Collie D., Sargan D., McConnell I. Phenotypic analysis of lymphocyte populations in the lungs and regional lymphoid tissue of sheep naturally infected with maedi visna virus. Clin Exp Immunol. 1992 Nov;90(2):204–208. doi: 10.1111/j.1365-2249.1992.tb07929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyand M. S., Ringler D. J., Naidu Y. M., Mattmuller M., Chalifoux L. V., Sehgal P. K., Daniel M. D., Desrosiers R. C., King N. W. Cellular localization of simian immunodeficiency virus in lymphoid tissues. II. In situ hybridization. Am J Pathol. 1989 Feb;134(2):385–393. [PMC free article] [PubMed] [Google Scholar]
- Yasutomi Y., Reimann K. A., Lord C. I., Miller M. D., Letvin N. L. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J Virol. 1993 Mar;67(3):1707–1711. doi: 10.1128/jvi.67.3.1707-1711.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]