Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1994 Jul;145(1):33–36.

Anti-CD31 delays platelet adhesion/aggregation at sites of endothelial injury in mouse cerebral arterioles.

W I Rosenblum 1, S Murata 1, G H Nelson 1, P K Werner 1, R Ranken 1, R C Harmon 1
PMCID: PMC1887306  PMID: 8030753

Abstract

The arterioles on the surface of the mouse brain (pial arterioles) were observed by in vivo microscopy. A focus of minor endothelial damage was produced in a single pial arteriole in each mouse by briefly exposing the site to a helium neon laser after an intravenous injection of Evans blue. Mice were injected 10 minutes before injury with a monoclonal antibody (MAb) to mouse CD31, also known as platelet endothelial cell adhesion molecule. This treatment doubled (P < .01) the time required for the laser to produce a recognizable platelet aggregate. In additional experiments, an MAb to mouse CD61 and an MAb to mouse intercellular adhesion molecule 1 had no effect. The data support previous observations indicating that platelet adhesion/aggregation in this model is induced by endothelial injury without exposure of basal lamina. The data are consistent with the hypothesis that the endothelial injury exposes or activates a platelet endothelial cell adhesion molecule on the endothelium which is blocked by the MAb directed against CD31. This may be the first demonstration of an effect of an anti-platelet endothelial cell adhesion molecule on platelet endothelial cell adhesion molecule on platelet adhesion/aggregation in vivo.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogen S. A., Baldwin H. S., Watkins S. C., Albelda S. M., Abbas A. K. Association of murine CD31 with transmigrating lymphocytes following antigenic stimulation. Am J Pathol. 1992 Oct;141(4):843–854. [PMC free article] [PubMed] [Google Scholar]
  2. Gil J., McNiff J. M. Alveolar epithelial lesions induced by angiotensin in rabbit lungs. Am J Pathol. 1983 Dec;113(3):331–340. [PMC free article] [PubMed] [Google Scholar]
  3. HONOUR A. J., MITCHELL J. R. PLATELET CLUMPING IN INJURED VESSELS. Br J Exp Pathol. 1964 Feb;45:75–87. [PMC free article] [PubMed] [Google Scholar]
  4. Isberg R. R., Leong J. M. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990 Mar 9;60(5):861–871. doi: 10.1016/0092-8674(90)90099-z. [DOI] [PubMed] [Google Scholar]
  5. Moncada S., Radomski M. W., Palmer R. M. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol. 1988 Jul 1;37(13):2495–2501. doi: 10.1016/0006-2952(88)90236-5. [DOI] [PubMed] [Google Scholar]
  6. Nishimura H., Rosenblum W. I., Nelson G. H., Boynton S. Agents that modify EDRF formation alter antiplatelet properties of brain arteriolar endothelium in vivo. Am J Physiol. 1991 Jul;261(1 Pt 2):H15–H21. doi: 10.1152/ajpheart.1991.261.1.H15. [DOI] [PubMed] [Google Scholar]
  7. Piali L., Albelda S. M., Baldwin H. S., Hammel P., Gisler R. H., Imhof B. A. Murine platelet endothelial cell adhesion molecule (PECAM-1)/CD31 modulates beta 2 integrins on lymphokine-activated killer cells. Eur J Immunol. 1993 Oct;23(10):2464–2471. doi: 10.1002/eji.1830231013. [DOI] [PubMed] [Google Scholar]
  8. Povlishock J. T., Rosenblum W. I. Injury of brain microvessels with a helium-neon laser and Evans blue can elicit local platelet aggregation without endothelial denudation. Arch Pathol Lab Med. 1987 May;111(5):415–421. [PubMed] [Google Scholar]
  9. Povlishock J. T., Rosenblum W. I., Sholley M. M., Wei E. P. An ultrastructural analysis of endothelial change paralleling platelet aggregation in a light/dye model of microvascular insult. Am J Pathol. 1983 Feb;110(2):148–160. [PMC free article] [PubMed] [Google Scholar]
  10. ROSENBLUM W. I., ZWEIFACH B. W. CEREBRAL MICROCIRCULATION IN THE MOUSE BRAIN. SPONTANEOUS AND DRUG-INDUCED CHANGES IN FLOW AND VASCULAR DIAMETER. Arch Neurol. 1963 Oct;9:414–423. doi: 10.1001/archneur.1963.00460100102012. [DOI] [PubMed] [Google Scholar]
  11. Rosenblum W. I. Aspects of endothelial malfunction and function in cerebral microvessels. Lab Invest. 1986 Sep;55(3):252–268. [PubMed] [Google Scholar]
  12. Rosenblum W. I., Nelson G. H., Povlishock J. T. Laser-induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse. Circ Res. 1987 Feb;60(2):169–176. doi: 10.1161/01.res.60.2.169. [DOI] [PubMed] [Google Scholar]
  13. Szalay J. Morphological response of blood platelets to increased venular permeability in vivo. Microvasc Res. 1981 Jan;21(1):57–74. doi: 10.1016/0026-2862(81)90005-4. [DOI] [PubMed] [Google Scholar]
  14. Williams R. L., Courtneidge S. A., Wagner E. F. Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell. 1988 Jan 15;52(1):121–131. doi: 10.1016/0092-8674(88)90536-3. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES