Abstract
Clones were derived by dilute plating from cultured aortic smooth muscle cells of 12-day-old rats. Clones Pup I to III resemble uncloned smooth muscle cultures from aortas of rat pups and from adult rat neointimas. They have a cobblestone morphology and proliferate in plasma-derived serum. By Northern analysis they contain platelet-derived growth factor B chain (PDGF-B) mRNA and high levels of CYPIA1, elastin, and osteopontin mRNAs, and they lack platelet-derived growth factor alpha-receptor (PDGF-alpha R) mRNA. In contrast, Pup V resembles smooth muscle cultures derived from uninjured adult rat arteries. It has an elongated morphology and proliferates poorly in plasma-derived serum. This clone expresses PDGF-alpha R mRNA, low levels of elastin and osteopontin mRNAs, and lacks CYPIA1 and PDGF-B mRNAs. Pup IV and VI have most of the properties of Pup I to III. We conclude that uncloned pup cultures are heterogeneous, but that the growth properties and gene expression pattern described for the uncloned culture is characteristic of individual clones within the population.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babij P., Periasamy M. Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol. 1989 Dec 5;210(3):673–679. doi: 10.1016/0022-2836(89)90142-3. [DOI] [PubMed] [Google Scholar]
- Barrett T. B., Benditt E. P. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2810–2814. doi: 10.1073/pnas.85.8.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bochaton-Piallat M. L., Gabbiani F., Ropraz P., Gabbiani G. Cultured aortic smooth muscle cells from newborn and adult rats show distinct cytoskeletal features. Differentiation. 1992 Apr;49(3):175–185. doi: 10.1111/j.1432-0436.1992.tb00665.x. [DOI] [PubMed] [Google Scholar]
- Brown K. E., Lawrence R., Sonenshein G. E. Concerted modulation of alpha 1(XI) and alpha 2(V) collagen mRNAs in bovine vascular smooth muscle cells. J Biol Chem. 1991 Dec 5;266(34):23268–23273. [PubMed] [Google Scholar]
- Campbell G. R., Campbell J. H. Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol. 1985 Apr;42(2):139–162. doi: 10.1016/0014-4800(85)90023-1. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Frid M. G., Shekhonin B. V., Koteliansky V. E., Glukhova M. A. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol. 1992 Oct;153(2):185–193. doi: 10.1016/0012-1606(92)90104-o. [DOI] [PubMed] [Google Scholar]
- Gajdusek C. M., Schwartz S. M. Technique for cloning bovine aortic endothelial cells. In Vitro. 1983 May;19(5):394–402. doi: 10.1007/BF02619556. [DOI] [PubMed] [Google Scholar]
- Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giachelli C. M., Majesky M. W., Schwartz S. M. Developmentally regulated cytochrome P-450IA1 expression in cultured rat vascular smooth muscle cells. J Biol Chem. 1991 Feb 25;266(6):3981–3986. [PubMed] [Google Scholar]
- Giachelli C., Bae N., Lombardi D., Majesky M., Schwartz S. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun. 1991 Jun 14;177(2):867–873. doi: 10.1016/0006-291x(91)91870-i. [DOI] [PubMed] [Google Scholar]
- Glukhova M. A., Frid M. G., Koteliansky V. E. Phenotypic changes of human aortic smooth muscle cells during development and in the adult vessel. Am J Physiol. 1991 Oct;261(4 Suppl):78–80. doi: 10.1152/ajpheart.1991.261.4.78. [DOI] [PubMed] [Google Scholar]
- Glukhova M. A., Kabakov A. E., Frid M. G., Ornatsky O. I., Belkin A. M., Mukhin D. N., Orekhov A. N., Koteliansky V. E., Smirnov V. N. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9542–9546. doi: 10.1073/pnas.85.24.9542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D., Mohai L. G., Schwartz S. M. Induction of polyploidy in cultures of neonatal rat aortic smooth muscle cells. Circ Res. 1986 Dec;59(6):633–644. doi: 10.1161/01.res.59.6.633. [DOI] [PubMed] [Google Scholar]
- Hall K. L., Harding J. W., Hosick H. L. Isolation and characterization of clonal vascular smooth muscle cell lines from spontaneously hypertensive and normotensive rat aortas. In Vitro Cell Dev Biol. 1991 Oct;27A(10):791–798. doi: 10.1007/BF02631245. [DOI] [PubMed] [Google Scholar]
- Hedin U., Holm J., Hansson G. K. Induction of tenascin in rat arterial injury. Relationship to altered smooth muscle cell phenotype. Am J Pathol. 1991 Sep;139(3):649–656. [PMC free article] [PubMed] [Google Scholar]
- Jawien A., Bowen-Pope D. F., Lindner V., Schwartz S. M., Clowes A. W. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 1992 Feb;89(2):507–511. doi: 10.1172/JCI115613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kindy M. S., Chang C. J., Sonenshein G. E. Serum deprivation of vascular smooth muscle cells enhances collagen gene expression. J Biol Chem. 1988 Aug 15;263(23):11426–11430. [PubMed] [Google Scholar]
- Kocher O., Skalli O., Bloom W. S., Gabbiani G. Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening. Lab Invest. 1984 Jun;50(6):645–652. [PubMed] [Google Scholar]
- Kuro-o M., Nagai R., Nakahara K., Katoh H., Tsai R. C., Tsuchimochi H., Yazaki Y., Ohkubo A., Takaku F. cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis. J Biol Chem. 1991 Feb 25;266(6):3768–3773. [PubMed] [Google Scholar]
- Lauper N. T., Unni K. K., Kottke B. A., Titus J. L. Anatomy and histology of aorta of White Carneau pigeon. Lab Invest. 1975 Apr;32(4):536–551. [PubMed] [Google Scholar]
- Le Lièvre C. S., Le Douarin N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol. 1975 Aug;34(1):125–154. [PubMed] [Google Scholar]
- Leclerc G., Isner J. M., Kearney M., Simons M., Safian R. D., Baim D. S., Weir L. Evidence implicating nonmuscle myosin in restenosis. Use of in situ hybridization to analyze human vascular lesions obtained by directional atherectomy. Circulation. 1992 Feb;85(2):543–553. doi: 10.1161/01.cir.85.2.543. [DOI] [PubMed] [Google Scholar]
- Liaw L., Almeida M., Hart C. E., Schwartz S. M., Giachelli C. M. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res. 1994 Feb;74(2):214–224. doi: 10.1161/01.res.74.2.214. [DOI] [PubMed] [Google Scholar]
- Majesky M. W., Benditt E. P., Schwartz S. M. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1524–1528. doi: 10.1073/pnas.85.5.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majesky M. W., Giachelli C. M., Reidy M. A., Schwartz S. M. Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ Res. 1992 Oct;71(4):759–768. doi: 10.1161/01.res.71.4.759. [DOI] [PubMed] [Google Scholar]
- Majesky M. W., Reidy M. A., Benditt E. P., Juchau M. R. Focal smooth muscle proliferation in the aortic intima produced by an initiation-promotion sequence. Proc Natl Acad Sci U S A. 1985 May;82(10):3450–3454. doi: 10.1073/pnas.82.10.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majesky M. W., Reidy M. A., Bowen-Pope D. F., Hart C. E., Wilcox J. N., Schwartz S. M. PDGF ligand and receptor gene expression during repair of arterial injury. J Cell Biol. 1990 Nov;111(5 Pt 1):2149–2158. doi: 10.1083/jcb.111.5.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majesky M. W., Schwartz S. M. Smooth muscle diversity in arterial wound repair. Toxicol Pathol. 1990;18(4 Pt 1):554–559. [PubMed] [Google Scholar]
- Majors A. K., Ehrhart L. A. Cell density and proliferation modulate collagen synthesis and procollagen mRNA levels in arterial smooth muscle cells. Exp Cell Res. 1992 May;200(1):168–174. doi: 10.1016/s0014-4827(05)80085-0. [DOI] [PubMed] [Google Scholar]
- McCaffrey T. A., Nicholson A. C., Szabo P. E., Weksler M. E., Weksler B. B. Aging and arteriosclerosis. The increased proliferation of arterial smooth muscle cells isolated from old rats is associated with increased platelet-derived growth factor-like activity. J Exp Med. 1988 Jan 1;167(1):163–174. doi: 10.1084/jem.167.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McHugh K. M., Lessard J. L. The development expression of the rat alpha-vascular and gamma-enteric smooth muscle isoactins: isolation and characterization of a rat gamma-enteric actin cDNA. Mol Cell Biol. 1988 Dec;8(12):5224–5231. doi: 10.1128/mcb.8.12.5224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McHugh K. M., Lessard J. L. The nucleotide sequence of a rat vascular smooth muscle alpha-actin cDNA. Nucleic Acids Res. 1988 May 11;16(9):4167–4167. doi: 10.1093/nar/16.9.4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss N. S., Benditt E. P. Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta. Lab Invest. 1970 Feb;22(2):166–183. [PubMed] [Google Scholar]
- Nakahara K., Nishimura H., Kuro-o M., Takewaki S., Iwase M., Ohkubo A., Yazaki Y., Nagai R. Identification of three types of PDGF-A chain gene transcripts in rabbit vascular smooth muscle and their regulated expression during development and by angiotensin II. Biochem Biophys Res Commun. 1992 Apr 30;184(2):811–818. doi: 10.1016/0006-291x(92)90662-5. [DOI] [PubMed] [Google Scholar]
- Okamoto E., Imataka K., Fujii J., Kuro-o M., Nakahara K., Nishimura H., Yazaki Y., Nagai R. Heterogeneity in smooth muscle cell population accumulating in the neointimas and the media of poststenotic dilatation of the rabbit carotid artery. Biochem Biophys Res Commun. 1992 May 29;185(1):459–464. doi: 10.1016/s0006-291x(05)81007-1. [DOI] [PubMed] [Google Scholar]
- Owens G. K., Thompson M. M. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem. 1986 Oct 5;261(28):13373–13380. [PubMed] [Google Scholar]
- Razin A., Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991 Sep;55(3):451–458. doi: 10.1128/mr.55.3.451-458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resink T. J., Scott-Burden T., Hahn A. W., Rouge M., Hosang M., Powell J. S., Bühler F. R. Specific growth stimulation of cultured smooth muscle cells from spontaneously hypertensive rats by platelet-derived growth factor A-chain homodimer. Cell Regul. 1990 Oct;1(11):821–831. doi: 10.1091/mbc.1.11.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarzani R., Arnaldi G., Chobanian A. V. Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension. 1991 Jun;17(6 Pt 2):888–895. doi: 10.1161/01.hyp.17.6.888. [DOI] [PubMed] [Google Scholar]
- Schwartz S. M., Foy L., Bowen-Pope D. F., Ross R. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am J Pathol. 1990 Jun;136(6):1417–1428. [PMC free article] [PubMed] [Google Scholar]
- Schwartz S. M., Heimark R. L., Majesky M. W. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990 Oct;70(4):1177–1209. doi: 10.1152/physrev.1990.70.4.1177. [DOI] [PubMed] [Google Scholar]
- Simons M., Leclerc G., Safian R. D., Isner J. M., Weir L., Baim D. S. Relation between activated smooth-muscle cells in coronary-artery lesions and restenosis after atherectomy. N Engl J Med. 1993 Mar 4;328(9):608–613. doi: 10.1056/NEJM199303043280903. [DOI] [PubMed] [Google Scholar]
- Skalli O., Bloom W. S., Ropraz P., Azzarone B., Gabbiani G. Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J Submicrosc Cytol. 1986 Jul;18(3):481–493. [PubMed] [Google Scholar]
- Skalli O., Ropraz P., Trzeciak A., Benzonana G., Gillessen D., Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. doi: 10.1083/jcb.103.6.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thyberg J., Hedin U., Sjölund M., Palmberg L., Bottger B. A. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis. 1990 Nov-Dec;10(6):966–990. doi: 10.1161/01.atv.10.6.966. [DOI] [PubMed] [Google Scholar]
- Walker L. N., Bowen-Pope D. F., Ross R., Reidy M. A. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7311–7315. doi: 10.1073/pnas.83.19.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Cooke P. H., Smith S. C. An electron microscopic study of pigeon aorta cell cultures. Cytodifferentiation and intracellular lipid accumulation. Exp Mol Pathol. 1977 Aug;27(1):1–18. doi: 10.1016/0014-4800(77)90015-6. [DOI] [PubMed] [Google Scholar]
- Wilson E., Mai Q., Sudhir K., Weiss R. H., Ives H. E. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol. 1993 Nov;123(3):741–747. doi: 10.1083/jcb.123.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanellato A. M., Borrione A. C., Giuriato L., Tonello M., Scannapieco G., Pauletto P., Sartore S. Myosin isoforms and cell heterogeneity in vascular smooth muscle. I. Developing and adult bovine aorta. Dev Biol. 1990 Oct;141(2):431–446. doi: 10.1016/0012-1606(90)90398-3. [DOI] [PubMed] [Google Scholar]
- van Neck J. W., Medina J. J., Onnekink C., van der Ven P. F., Bloemers H. P., Schwartz S. M. Basic fibroblast growth factor has a differential effect on MyoD conversion of cultured aortic smooth muscle cells from newborn and adult rats. Am J Pathol. 1993 Jul;143(1):269–282. [PMC free article] [PubMed] [Google Scholar]
- van Neck J. W., van Berkel P. H., Telleman P., Steijns L. S., Onnekink C., Bloemers H. P. Effect of ploidy on transcription levels in cultured rat aortic smooth muscle cells. FEBS Lett. 1992 Feb 3;297(1-2):189–195. doi: 10.1016/0014-5793(92)80358-n. [DOI] [PubMed] [Google Scholar]






