Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1994 Nov;145(5):1219–1227.

The T cell antigen receptor CD3:CD4 molecular complex is diminished on the surface of pulmonary lymphocytes.

K Marathias 1, C Pinto 1, G Rodberg 1, F Preffer 1, J Wong 1, R Kradin 1
PMCID: PMC1887433  PMID: 7977652

Abstract

CD4, a 55-kd cell surface glycoprotein, binds to class II major histocompatibility complex (MHC) (Ia) antigens and functions as a coreceptor for the T cell antigen receptor (Ti alpha beta)-CD3 complex. We have observed that critical elements of the T cell antigen multireceptor complex, including Ti alpha beta, CD3, CD4, but not CD8, were diminished on CD45RO+ pulmonary T lymphocytes but not CD45RO+ peripheral blood T lymphocytes (PBL). Epitopes mapping from the first (D1) to the fourth (D4) extracytoplasmic Ig-like domains of CD4 were expressed to a lesser degree on pulmonary T cells than on PBL (P = 0.002). CD4 expression on pulmonary T cells did not increase after 72 hours of ex vivo culture in complete medium but was restored toward control levels by stimulation with phytohemagglutinin, anti-CD3, or interleukin-2. CD4 mRNA isolated from lung T cells and PBL co-migrated on Northern blots and the total levels of CD4 mRNA were comparable, suggesting that diminished CD4 expression by pulmonary T cells might reflect a posttranscriptional change. To determine whether CD4bright T cells convert with mitogen stimulation to CD4dim cells, PBLs were stimulated with immobilized anti-CD3, anti-CD4, or a molecularly engineered anti-CD3:CD4 bispecific monoclonal antibody and the ratio of the CD4:CD3 mean fluorescence staining intensities was calculated at days 3 and 13. The CD4:CD3 ratio decreased primarily for cells stimulated with anti-CD3:CD4, suggesting that co-ligation of CD3 and CD4 is required for the generation of CD4dim T cells. We conclude that diminished Ti alpha beta-CD3:CD4 expression is a characteristic of T cells in lung that is not shared by peripheral blood T cells in vivo, and speculate that this change reflects T cell activation in a millieu of limited interleukin-2 availability.

Full text

PDF
1219

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja S. S., Paliogianni F., Yamada H., Balow J. E., Boumpas D. T. Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol. 1993 Apr 15;150(8 Pt 1):3109–3118. [PubMed] [Google Scholar]
  2. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  3. Alwine J. C., Kemp D. J., Stark G. R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350–5354. doi: 10.1073/pnas.74.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bach M. A., Phan-Dinh-Tuy F., Bach J. F., Wallach D., Biddison W. E., Sharrow S. O., Goldstein G., Kung P. C. Unusual phenotypes of human inducer T cells as measured by OKT4 and related monoclonal antibodies. J Immunol. 1981 Sep;127(3):980–982. [PubMed] [Google Scholar]
  5. Baixeras E., Huard B., Miossec C., Jitsukawa S., Martin M., Hercend T., Auffray C., Triebel F., Piatier-Tonneau D. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med. 1992 Aug 1;176(2):327–337. doi: 10.1084/jem.176.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biddison W. E., Rao P. E., Talle M. A., Goldstein G., Shaw S. Possible involvement of the OKT4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of cytotoxic T lymphocytes specific for SB antigens. J Exp Med. 1982 Oct 1;156(4):1065–1076. doi: 10.1084/jem.156.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrera A. C., Sanchez-Madrid F., Lopez-Botet M., Bernabeu C., De Landazuri M. O. Involvement of the CD4 molecule in a post-activation event on T cell proliferation. Eur J Immunol. 1987 Feb;17(2):179–186. doi: 10.1002/eji.1830170205. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Doyle C., Shin J., Dunbrack R. L., Jr, Strominger J. L. Mutational analysis of the structure and function of the CD4 protein. Immunol Rev. 1989 Jun;109:17–37. doi: 10.1111/j.1600-065x.1989.tb00018.x. [DOI] [PubMed] [Google Scholar]
  10. Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature. 1987 Nov 19;330(6145):256–259. doi: 10.1038/330256a0. [DOI] [PubMed] [Google Scholar]
  11. Fields A. P., Bednarik D. P., Hess A., May W. S. Human immunodeficiency virus induces phosphorylation of its cell surface receptor. Nature. 1988 May 19;333(6170):278–280. doi: 10.1038/333278a0. [DOI] [PubMed] [Google Scholar]
  12. Foley P., Kazazi F., Biti R., Sorrell T. C., Cunningham A. L. HIV infection of monocytes inhibits the T-lymphocyte proliferative response to recall antigens, via production of eicosanoids. Immunology. 1992 Mar;75(3):391–397. [PMC free article] [PubMed] [Google Scholar]
  13. Greenstein J. L., Kappler J., Marrack P., Burakoff S. J. The role of L3T4 in recognition of Ia by a cytotoxic, H-2Dd-specific T cell hybridoma. J Exp Med. 1984 Apr 1;159(4):1213–1224. doi: 10.1084/jem.159.4.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holt P. G., Robinson B. W., Reid M., Kees U. R., Warton A., Dawson V. H., Rose A., Schon-Hegrad M., Papadimitriou J. M. Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin Exp Immunol. 1986 Oct;66(1):188–200. [PMC free article] [PubMed] [Google Scholar]
  15. Jameson B. A., Rao P. E., Kong L. I., Hahn B. H., Shaw G. M., Hood L. E., Kent S. B. Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science. 1988 Jun 3;240(4857):1335–1339. doi: 10.1126/science.2453925. [DOI] [PubMed] [Google Scholar]
  16. Janeway C. A., Jr The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol. 1992;10:645–674. doi: 10.1146/annurev.iy.10.040192.003241. [DOI] [PubMed] [Google Scholar]
  17. Kieber-Emmons T., Jameson B. A., Morrow W. J. The gp120-CD4 interface: structural, immunological and pathological considerations. Biochim Biophys Acta. 1989 Dec 27;989(3):281–300. [PubMed] [Google Scholar]
  18. Koulova L., Clark E. A., Shu G., Dupont B. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells. J Exp Med. 1991 Mar 1;173(3):759–762. doi: 10.1084/jem.173.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mage M. G., McHugh L. L., Rothstein T. L. Mouse lymphocytes with and without surface immunoglobulin: preparative scale separation in polystyrene tissue culture dishes coated with specifically purified anti-immunoglobulin. J Immunol Methods. 1977;15(1):47–56. doi: 10.1016/0022-1759(77)90016-3. [DOI] [PubMed] [Google Scholar]
  20. Marathias K. P., Preffer F. I., Pinto C., Kradin R. L. Most human pulmonary infiltrating lymphocytes display the surface immune phenotype and functional responses of sensitized T cells. Am J Respir Cell Mol Biol. 1991 Nov;5(5):470–476. doi: 10.1165/ajrcmb/5.5.470. [DOI] [PubMed] [Google Scholar]
  21. Marrack P., Endres R., Shimonkevitz R., Zlotnik A., Dialynas D., Fitch F., Kappler J. The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med. 1983 Oct 1;158(4):1077–1091. doi: 10.1084/jem.158.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Merkenschlager M., Altmann D. M., Ikeda H. T cell alloresponses against HLA-DQ and -DR products involve multiple epitopes on the CD4 molecule. Distinct mechanisms contribute to the inhibition of HLA class II-dependent and -independent T cell responses by antibodies to CD4. J Immunol. 1990 Nov 15;145(10):3181–3187. [PubMed] [Google Scholar]
  23. Merkenschlager M., Buck D., Beverley P. C., Sattentau Q. J. Functional epitope analysis of the human CD4 molecule. The MHC class II-dependent activation of resting T cells is inhibited by monoclonal antibodies to CD4 regardless whether or not they recognize epitopes involved in the binding of MHC class II or HIV gp120. J Immunol. 1990 Nov 1;145(9):2839–2845. [PubMed] [Google Scholar]
  24. Meuer S. C., Schlossman S. F., Reinherz E. L. Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4395–4399. doi: 10.1073/pnas.79.14.4395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mizukami T., Fuerst T. R., Berger E. A., Moss B. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9273–9277. doi: 10.1073/pnas.85.23.9273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore J. P., McKeating J. A., Norton W. A., Sattentau Q. J. Direct measurement of soluble CD4 binding to human immunodeficiency virus type 1 virions: gp120 dissociation and its implications for virus-cell binding and fusion reactions and their neutralization by soluble CD4. J Virol. 1991 Mar;65(3):1133–1140. doi: 10.1128/jvi.65.3.1133-1140.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paine R., 3rd, Chavis A., Gaposchkin D., Christensen P., Mody C. H., Turka L. A., Toews G. B. A factor secreted by a human pulmonary alveolar epithelial-like cell line blocks T-cell proliferation between G1 and S phase. Am J Respir Cell Mol Biol. 1992 Jun;6(6):658–666. doi: 10.1165/ajrcmb/6.6.658. [DOI] [PubMed] [Google Scholar]
  28. Perosa F., Dannecker G., Ferrone S., Dammacco F. Immunochemical and functional characterization of anti-idiotypic antibodies to a mouse anti-CD4 monoclonal antibody. Int J Clin Lab Res. 1991;21(2):179–185. doi: 10.1007/BF02591640. [DOI] [PubMed] [Google Scholar]
  29. Rand T. H., Cruikshank W. W., Center D. M., Weller P. F. CD4-mediated stimulation of human eosinophils: lymphocyte chemoattractant factor and other CD4-binding ligands elicit eosinophil migration. J Exp Med. 1991 Jun 1;173(6):1521–1528. doi: 10.1084/jem.173.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saltini C., Kirby M., Trapnell B. C., Tamura N., Crystal R. G. Biased accumulation of T lymphocytes with "memory"-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung. J Exp Med. 1990 Apr 1;171(4):1123–1140. doi: 10.1084/jem.171.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  32. Sattentau Q. J. Interactions of HIV gp120 with the CD4 molecule on lymphocytes and in the nervous system. Ann N Y Acad Sci. 1990;594:355–361. doi: 10.1111/j.1749-6632.1990.tb40494.x. [DOI] [PubMed] [Google Scholar]
  33. Schnittman S. M., Lane H. C., Greenhouse J., Justement J. S., Baseler M., Fauci A. S. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6058–6062. doi: 10.1073/pnas.87.16.6058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Serra H. M., Krowka J. F., Ledbetter J. A., Pilarski L. M. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J Immunol. 1988 Mar 1;140(5):1435–1441. [PubMed] [Google Scholar]
  35. Sleckman B. P., Bigby M., Greenstein J. L., Burakoff S. J., Sy M. S. Requirements for modulation of the CD4 molecule in response to phorbol myristate acetate. Role of the cytoplasmic domain. J Immunol. 1989 Mar 1;142(5):1457–1462. [PubMed] [Google Scholar]
  36. Sleckman B. P., Peterson A., Jones W. K., Foran J. A., Greenstein J. L., Seed B., Burakoff S. J. Expression and function of CD4 in a murine T-cell hybridoma. Nature. 1987 Jul 23;328(6128):351–353. doi: 10.1038/328351a0. [DOI] [PubMed] [Google Scholar]
  37. Smith M. D., Roberts-Thomson P. J. Lymphocyte surface marker expression in rheumatic diseases: evidence for prior activation of lymphocytes in vivo. Ann Rheum Dis. 1990 Feb;49(2):81–87. doi: 10.1136/ard.49.2.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Solbach W. Tumor-promoting phorbol esters selectively abrogate the expression of the T4 differentiation antigen expressed on normal and malignant (Sézary) T helper lymphocytes. J Exp Med. 1982 Oct 1;156(4):1250–1255. doi: 10.1084/jem.156.4.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Streuli M., Morimoto C., Schrieber M., Schlossman S. F., Saito H. Characterization of CD45 and CD45R monoclonal antibodies using transfected mouse cell lines that express individual human leukocyte common antigens. J Immunol. 1988 Dec 1;141(11):3910–3914. [PubMed] [Google Scholar]
  40. Wassmer P., Chan C., Lögdberg L., Shevach E. M. Role of the L3T4-antigen in T cell activation. II. Inhibition of T cell activation by monoclonal anti-L3T4 antibodies in the absence of accessory cells. J Immunol. 1985 Oct;135(4):2237–2242. [PubMed] [Google Scholar]
  41. Weyand C. M., Goronzy J., Fathman C. G. Modulation of CD4 by antigenic activation. J Immunol. 1987 Mar 1;138(5):1351–1354. [PubMed] [Google Scholar]
  42. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol. 1983 Nov;131(5):2178–2183. [PubMed] [Google Scholar]
  43. Wong J. T., Colvin R. B. Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J Immunol. 1987 Aug 15;139(4):1369–1374. [PubMed] [Google Scholar]
  44. Zanders E. D., Lamb J. R., Feldmann M., Green N., Beverley P. C. Tolerance of T-cell clones is associated with membrane antigen changes. Nature. 1983 Jun 16;303(5918):625–627. doi: 10.1038/303625a0. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES