Abstract
Placental protein 14 (PP14), an immunosuppressive molecule previously known to be expressed in the female and male reproductive tracts only, was shown to be expressed by hematopoietic cells of the megakaryocytic lineage. Northern blot analysis confirmed the induction specificity of PP14 mRNA in phorbol ester-treated K562 cells. Potent immunosuppressive activity in conditioned medium from phorbol ester-treated K562 cells was attributed to hematopoietic PP14 by anti-PP14 antibody blocking. Immunoprecipitation with anti-PP14 antibodies from conditioned medium revealed two distinct PP14 protein isoforms, designated PP14.1 and PP14.2. Polymerase chain reaction cloning and analysis demonstrated the presence of distinct mRNA counterparts to PP14.1 and PP14.2 that had not been resolved by Northern blot analyses. Hematopoietic PP14.1 mRNA corresponds in size to endometrial PP14 mRNA, whereas the smaller hematopoietic PP14.2 mRNA displays an internal in-frame 66-nucleotide deletion that can be explained by alternative splicing and predicts a 22-amino-acid deletion in the encoded gene product. Both PP14 mRNA isoforms were additionally detected by reverse transcriptase polymerase chain reaction analyses in two human megakaryocytic cell lines and in normal human megakaryocytes and platelets. PP14 mRNA was not detected by reverse transcriptase polymerase chain reaction in a panel of nonhematopoietic, nonendometrial tissues examined. The finding of hematopoietic PP14 within the megakaryocytic lineage provides an additional regulatory link between the coagulation and immune systems in normal and pathological settings.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alitalo R. Induced differentiation of K562 leukemia cells: a model for studies of gene expression in early megakaryoblasts. Leuk Res. 1990;14(6):501–514. doi: 10.1016/0145-2126(90)90002-q. [DOI] [PubMed] [Google Scholar]
- Alitalo R., Partanen J., Pertovaara L., Hölttä E., Sistonen L., Andersson L., Alitalo K. Increased erythroid potentiating activity/tissue inhibitor of metalloproteinases and jun/fos transcription factor complex characterize tumor promoter-induced megakaryoblastic differentiation of K562 leukemia cells. Blood. 1990 May 15;75(10):1974–1982. [PubMed] [Google Scholar]
- Andersson L. C., Jokinen M., Gahmberg C. G. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature. 1979 Mar 22;278(5702):364–365. doi: 10.1038/278364a0. [DOI] [PubMed] [Google Scholar]
- Bohn H., Kraus W., Winckler W. New soluble placental tissue proteins: their isolation, characterization, localization and quantification. Placenta Suppl. 1982;4:67–81. [PubMed] [Google Scholar]
- Bolton A. E., Pockley A. G., Clough K. J., Mowles E. A., Stoker R. J., Westwood O. M., Chapman M. G. Identification of placental protein 14 as an immunosuppressive factor in human reproduction. Lancet. 1987 Mar 14;1(8533):593–595. doi: 10.1016/s0140-6736(87)90235-2. [DOI] [PubMed] [Google Scholar]
- Garde J., Bell S. C., Eperon I. C. Multiple forms of mRNA encoding human pregnancy-associated endometrial alpha 2-globulin, a beta-lactoglobulin homologue. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2456–2460. doi: 10.1073/pnas.88.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gewirtz A. M., Boghosian-Sell L., Catani L., Ratajczak M. Z., Shen Y. M., Schreiber A. D. Expression of Fc gamma RII and CD4 receptors by normal human megakaryocytes. Exp Hematol. 1992 May;20(4):512–516. [PubMed] [Google Scholar]
- Gewirtz A. M., Burger D., Rado T. A., Benz E. J., Jr, Hoffman R. Constitutive expression of platelet glycoproteins by the human leukemia cell line K562. Blood. 1982 Sep;60(3):785–789. [PubMed] [Google Scholar]
- Gewirtz A. M., Keefer M., Doshi K., Annamalai A. E., Chiu H. C., Colman R. W. Biology of human megakaryocyte factor V. Blood. 1986 Jun;67(6):1639–1648. [PubMed] [Google Scholar]
- Huber D., Philipp J., Fontana A. Protease inhibitors interfere with the transforming growth factor-beta-dependent but not the transforming growth factor-beta-independent pathway of tumor cell-mediated immunosuppression. J Immunol. 1992 Jan 1;148(1):277–284. [PubMed] [Google Scholar]
- Julkunen M., Koistinen R., Sjöberg J., Rutanen E. M., Wahlström T., Seppälä M. Secretory endometrium synthesizes placental protein 14. Endocrinology. 1986 May;118(5):1782–1786. doi: 10.1210/endo-118-5-1782. [DOI] [PubMed] [Google Scholar]
- Julkunen M., Rutanen E. M., Koskimies A., Ranta T., Bohn H., Seppälä M. Distribution of placental protein 14 in tissues and body fluids during pregnancy. Br J Obstet Gynaecol. 1985 Nov;92(11):1145–1151. doi: 10.1111/j.1471-0528.1985.tb03027.x. [DOI] [PubMed] [Google Scholar]
- Julkunen M., Seppälä M., Jänne O. A. Complete amino acid sequence of human placental protein 14: a progesterone-regulated uterine protein homologous to beta-lactoglobulins. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8845–8849. doi: 10.1073/pnas.85.23.8845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julkunen M., Wahlström T., Seppälä M., Koistinen R., Koskimies A., Stenman U. H., Bohn H. Detection and localization of placental protein 14-like protein in human seminal plasma and in the male genital tract. Arch Androl. 1984;12 (Suppl):59–67. [PubMed] [Google Scholar]
- Lyons R. M., Gentry L. E., Purchio A. F., Moses H. L. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 1990 Apr;110(4):1361–1367. doi: 10.1083/jcb.110.4.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan D. A., Gumucio D. L., Brodsky I. Granulocyte-macrophage colony-stimulating factor-dependent growth and erythropoietin-induced differentiation of a human cell line MB-02. Blood. 1991 Dec 1;78(11):2860–2871. [PubMed] [Google Scholar]
- Okamoto N., Uchida A., Takakura K., Kariya Y., Kanzaki H., Riittinen L., Koistinen R., Seppälä M., Mori T. Suppression by human placental protein 14 of natural killer cell activity. Am J Reprod Immunol. 1991 Dec;26(4):137–142. doi: 10.1111/j.1600-0897.1991.tb00713.x. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pockley A. G., Barratt C. L., Bolton A. E. Placental protein 14 (PP14) content and immunosuppressive activity of human cervical mucus. Symp Soc Exp Biol. 1989;43:317–323. [PubMed] [Google Scholar]
- Pockley A. G., Bolton A. E. Placental protein 14 (PP14) inhibits the synthesis of interleukin-2 and the release of soluble interleukin-2 receptors from phytohaemagglutinin-stimulated lymphocytes. Clin Exp Immunol. 1989 Aug;77(2):252–256. [PMC free article] [PubMed] [Google Scholar]
- Pockley A. G., Bolton A. E. The effect of human placental protein 14 (PP14) on the production of interleukin-1 from mitogenically stimulated mononuclear cell cultures. Immunology. 1990 Feb;69(2):277–281. [PMC free article] [PubMed] [Google Scholar]
- Riittinen L., Närvänen O., Virtanen I., Seppälä M. Monoclonal antibodies against endometrial protein PP14 and their use for purification and radioimmunoassay of PP14. J Immunol Methods. 1991 Jan 24;136(1):85–90. doi: 10.1016/0022-1759(91)90253-c. [DOI] [PubMed] [Google Scholar]
- Riittinen L., Stenman U. H., Alfthan H., Suikkari A. M., Bohn H., Seppälä M. Time-resolved immunofluorometric assay for placental protein 14. Clin Chim Acta. 1989 Aug 15;183(2):115–123. doi: 10.1016/0009-8981(89)90327-6. [DOI] [PubMed] [Google Scholar]
- Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2779–2783. doi: 10.1073/pnas.76.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada T., Ohzeki S., Utsumi K., Takiuchi H., Muramatsu M., Li X. F., Shimizu J., Fujiwara H., Hamaoka T. Transforming growth factor-beta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol. 1991 Feb 1;146(3):1077–1082. [PubMed] [Google Scholar]
- Tucker K. A., Lilly M. B., Heck L., Jr, Rado T. A. Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood. 1987 Aug;70(2):372–378. [PubMed] [Google Scholar]
- Vaisse C., Atger M., Potier B., Milgrom E. Human placental protein 14 gene: sequence and characterization of a short duplication. DNA Cell Biol. 1990 Jul-Aug;9(6):401–413. doi: 10.1089/dna.1990.9.401. [DOI] [PubMed] [Google Scholar]
- Wahl S. M., Hunt D. A., Wong H. L., Dougherty S., McCartney-Francis N., Wahl L. M., Ellingsworth L., Schmidt J. A., Hall G., Roberts A. B. Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J Immunol. 1988 May 1;140(9):3026–3032. [PubMed] [Google Scholar]
- Westwood O. M., Chapman M. G., Totty N., Philp R., Bolton A. E., Lazarus N. R. N-terminal sequence analysis of human placental protein 14, purified in high yield from decidual cytosol. J Reprod Fertil. 1988 Mar;82(2):493–500. doi: 10.1530/jrf.0.0820493. [DOI] [PubMed] [Google Scholar]







