Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Mar;69(3):1678–1686. doi: 10.1128/jvi.69.3.1678-1686.1995

Canine distemper virus persistence in the nervous system is associated with noncytolytic selective virus spread.

A Zurbriggen 1, H U Graber 1, A Wagner 1, M Vandevelde 1
PMCID: PMC188767  PMID: 7853504

Abstract

Canine distemper virus (CDV), a negative-strand RNA morbillivirus, causes a progressive demyelinating disease in which virus persistence plays an essential role. The antiviral immune response leads to virus clearance in the inflammatory lesions. However, CDV can replicate and persist outside these inflammatory lesions within the brain. How CDV is capable of persisting in the presence of an effective antiviral immune response is poorly understood. In the present investigation, we studied several aspects of virus replication in primary dog brain cell cultures (DBCC), comparing an attenuated CDV strain and a virulent CDV strain. Confluent DBCC were infected with either virulent A75/17-CDV or attenuated Onderstepoort-CDV and monitored for 60 days. Persistence was not associated with defective virus production, because all mRNAs and corresponding proteins were continuously expressed in the noncytolytic infection. Quantitative measurements did not detect a difference between the two types of infection in the rate of virus transcription and protein synthesis at the level of the single cell. However, electron microscopy and virus titration experiments showed that in the persistent CDV infection virus budding is strongly limited compared with that of the attenuated virus. Morphometry and immunocytochemistry showed profound differences in the way the two viruses spread in the culture. The attenuated CDV spread randomly to immediately adjacent cells, whereas persistent CDV spread selectively to more-distant cells by way of cell processes. In conclusion, the present study supports a mechanism of CDV persistence through selective spread by way of cell processes, enabling virulent CDV to invade the central nervous system without the need of releasing much virus into the extracellular space.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baczko K., Liebert U. G., Billeter M., Cattaneo R., Budka H., ter Meulen V. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol. 1986 Aug;59(2):472–478. doi: 10.1128/jvi.59.2.472-478.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bollo E., Zurbriggen A., Vandevelde M., Fankhauser R. Canine distemper virus clearance in chronic inflammatory demyelination. Acta Neuropathol. 1986;72(1):69–73. doi: 10.1007/BF00687949. [DOI] [PubMed] [Google Scholar]
  3. Cattaneo R., Schmid A., Billeter M. A., Sheppard R. D., Udem S. A. Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line. J Virol. 1988 Apr;62(4):1388–1397. doi: 10.1128/jvi.62.4.1388-1397.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedlander J. M., Summers B. A., Appel M. J. Persistence of virulent canine distemper virus in lymphoblastoid cell lines. Arch Virol. 1985;86(1-2):47–62. doi: 10.1007/BF01314113. [DOI] [PubMed] [Google Scholar]
  5. Glaus T., Griot C., Richard A., Althaus U., Herschkowitz N., Vandevelde M. Ultrastructural and biochemical findings in brain cell cultures infected with canine distemper virus. Acta Neuropathol. 1990;80(1):59–67. doi: 10.1007/BF00294222. [DOI] [PubMed] [Google Scholar]
  6. Hamburger D., Griot C., Zurbriggen A., Orvell C., Vandevelde M. Loss of virulence of canine distemper virus is associated with a structural change recognized by a monoclonal antibody. Experientia. 1991 Aug 15;47(8):842–845. doi: 10.1007/BF01922469. [DOI] [PubMed] [Google Scholar]
  7. Higgins R. J., Child G., Vandevelde M. Chronic relapsing demyelinating encephalomyelitis associated with persistent spontaneous canine distemper virus infection. Acta Neuropathol. 1989;77(4):441–444. doi: 10.1007/BF00687381. [DOI] [PubMed] [Google Scholar]
  8. Higgins R. J., Krakowka S. G., Metzler A. E., Koestner A. Primary demyelination in experimental canine distemper virus induced encephalomyelitis in gnotobiotic dogs. Sequential immunologic and morphologic findings. Acta Neuropathol. 1982;58(1):1–8. doi: 10.1007/BF00692691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Imagawa D. T., Howard E. B., Van Pelt L. F., Ryan C. P., Bui H. D., Shapshak P. Isolation of canine distemper virus from dogs with chronic neurological diseases. Proc Soc Exp Biol Med. 1980 Jul;164(3):355–362. doi: 10.3181/00379727-164-40877. [DOI] [PubMed] [Google Scholar]
  10. Johnson G. C., Fenner W. R., Krakowka S. Production of immunoglobulin G and increased antiviral antibody in cerebrospinal fluid of dogs with delayed-onset canine distemper viral encephalitis. J Neuroimmunol. 1988 Feb;17(3):237–251. doi: 10.1016/0165-5728(88)90072-0. [DOI] [PubMed] [Google Scholar]
  11. Liebert U. G., Baczko K., Budka H., ter Meulen V. Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol. 1986 Nov;67(Pt 11):2435–2444. doi: 10.1099/0022-1317-67-11-2435. [DOI] [PubMed] [Google Scholar]
  12. Metzler A. E., Higgins R. J., Krakowka S., Koestner A. Persistent in vitro interaction of virulent and attenuated canine distemper virus with bovine cells. Arch Virol. 1980;66(4):329–339. doi: 10.1007/BF01320629. [DOI] [PubMed] [Google Scholar]
  13. Metzler A. E., Krakowka S., Axthelm M. K., Gorham J. R. In vitro propagation of canine distemper virus: establishment of persistent infection in Vero cells. Am J Vet Res. 1984 Oct;45(10):2211–2215. [PubMed] [Google Scholar]
  14. Oglesbee M., Jackwood D., Perrine K., Axthelm M., Krakowka S., Rice J. In vitro detection of canine distemper virus nucleic acid with a virus-specific cDNA probe by dot-blot and in situ hybridization. J Virol Methods. 1986 Nov;14(3-4):195–211. doi: 10.1016/0166-0934(86)90022-4. [DOI] [PubMed] [Google Scholar]
  15. Oldstone M. B., Rall G. F. Mechanism and consequence of viral persistence in cells of the immune system and neurons. Intervirology. 1993;35(1-4):116–121. doi: 10.1159/000150302. [DOI] [PubMed] [Google Scholar]
  16. Pearce-Kelling S., Mitchell W. J., Summers B. A., Appel M. J. Growth of canine distemper virus in cultured astrocytes: relationship to in vivo persistence and disease. Microb Pathog. 1990 Jan;8(1):71–82. doi: 10.1016/0882-4010(90)90009-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneider-Schaulies S., Liebert U. G., Baczko K., ter Meulen V. Restricted expression of measles virus in primary rat astroglial cells. Virology. 1990 Aug;177(2):802–806. doi: 10.1016/0042-6822(90)90553-4. [DOI] [PubMed] [Google Scholar]
  18. Schneider-Schaulies S., Schneider-Schaulies J., Bayer M., Löffler S., ter Meulen V. Spontaneous and differentiation-dependent regulation of measles virus gene expression in human glial cells. J Virol. 1993 Jun;67(6):3375–3383. doi: 10.1128/jvi.67.6.3375-3383.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tobler L. H., Imagawa D. T. Mechanism of persistence with canine distemper virus: difference between a laboratory strain and an isolate from a dog with chronic neurological disease. Intervirology. 1984;21(2):77–86. doi: 10.1159/000149505. [DOI] [PubMed] [Google Scholar]
  20. Vandevelde M., Kristensen B., Braund K. G., Greene C. E., Swango L. J., Hoerlein B. F. Chronic canine distemper virus encephalitis in mature dogs. Vet Pathol. 1980 Jan;17(1):17–28. doi: 10.1177/030098588001700102. [DOI] [PubMed] [Google Scholar]
  21. Vandevelde M., Zurbriggen A., Steck A., Bichsel P. Studies on the intrathecal humoral immune response in canine distemper encephalitis. J Neuroimmunol. 1986 Mar;11(1):41–51. doi: 10.1016/0165-5728(86)90073-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zurbriggen A., Dumas M., Vandevelde M. Neurons in dissociated canine brain cell cultures. Zentralbl Veterinarmed A. 1987 Nov;34(9):673–678. doi: 10.1111/j.1439-0442.1987.tb00330.x. [DOI] [PubMed] [Google Scholar]
  23. Zurbriggen A., Müller C., Vandevelde M. In situ hybridization of virulent canine distemper virus in brain tissue, using digoxigenin-labeled probes. Am J Vet Res. 1993 Sep;54(9):1457–1461. [PubMed] [Google Scholar]
  24. Zurbriggen A., Vandevelde M., Beranek C. F., Steck A. Morphological and immunocytochemical characterisation of mixed glial cell cultures derived from neonatal canine brain. Res Vet Sci. 1984 May;36(3):270–275. [PubMed] [Google Scholar]
  25. Zurbriggen A., Vandevelde M., Bollo E. Demyelinating, non-demyelinating and attenuated canine distemper virus strains induce oligodendroglial cytolysis in vitro. J Neurol Sci. 1987 Jun;79(1-2):33–41. doi: 10.1016/0022-510x(87)90257-7. [DOI] [PubMed] [Google Scholar]
  26. Zurbriggen A., Yamawaki M., Vandevelde M. Restricted canine distemper virus infection of oligodendrocytes. Lab Invest. 1993 Mar;68(3):277–284. [PubMed] [Google Scholar]
  27. ter Meulen V., Martin S. J. Genesis and maintenance of a persistent infection by canine distemper virus. J Gen Virol. 1976 Sep;32(3):431–440. doi: 10.1099/0022-1317-32-3-431. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES