Abstract
The intravitreous injection of an endotoxin of Escherichia coli 055:B5 (LPS; 0.1-0.5 microgram/50 microliters of saline) induces ocular inflammation in rabbits that is maximal 20-24 hours later and disappears by 4 days. The inflammation is characterized by an alteration in ocular vascular permeability (OVP) measured by the ocular extravasation of 125I-albumin and an outpouring of leukocytes, most of which are polymorphonuclear leukocytes (PMNs), as determined by histopathologic study. Nitrogen mustard (mechlorethamine, 1.75 mg/kg) administered 3 days prior to LPS virtually eliminates PMNs in the circulation and those infiltrating ocular tissues 20 hours after intravitreous LPS, and yet the average increase in vascular permeability is not different from that of controls. Cobra venom factor (CVF; 300-400 units) 7 hours before intravitreous LPS produces a greater than 90% decrease in both hemolytic complement activity and zymosan-inducible serum chemotactic activity; yet 20 hours after LPS, the OVP is the same in CVF-treated rabbits and controls. For comparison, an ocular passive Arthus reaction (ovalbumin-anti-ovalbumin) was significantly affected by CVF pretreatment. Chemotactic activity in the aqueous humor is found in both CVF-treated and control rabbits 20 hours after intravitreous LPS. This activity attracts rabbit, but not human, PMNs, is partially heat-sensitive, and is not inhibited when PMNs are preincubated with C5a. These results indicate that neither PMNs nor circulating complement determine the OVP following intravitreous LPS, and that the chemotactic activity present in aqueous humor at the height of the inflammatory response is not primarily C5a.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Ghadyan A., Mead A., Sears M. Increased pressure after paracentesis of the rabbit eye is completely accounted for by prostaglandin synthesis and release plus pupillary block. Invest Ophthalmol Vis Sci. 1979 Apr;18(4):361–365. [PubMed] [Google Scholar]
- Bergstein J. M., Michael A. F., Jr Failure of cobra venom factor to prevent the generalized Shwartzman reaction and loss of renal cortical fibrinolytic activity. Am J Pathol. 1974 Jan;74(1):19–31. [PMC free article] [PubMed] [Google Scholar]
- Bhattacherjee P., Hammond B., Salmon J. A., Stepney R., Eakins K. E. Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Eur J Pharmacol. 1981 Jul 17;73(1):21–28. doi: 10.1016/0014-2999(81)90141-2. [DOI] [PubMed] [Google Scholar]
- Bhattacherjee P., Williams R. N., Eakins K. E. An evaluation of ocular inflammation following the injection of bacterial endotoxin into the rat foot pad. Invest Ophthalmol Vis Sci. 1983 Feb;24(2):196–202. [PubMed] [Google Scholar]
- Bito L. Z. Inflammatory effects of endotoxin-like contaminants in commonly used protein preparations. Science. 1977 Apr 1;196(4285):83–85. doi: 10.1126/science.557238. [DOI] [PubMed] [Google Scholar]
- Bito L. Z. The effects of experimental uveitis on anterior uveal prostaglandin transport and aqueous humor composition. Invest Ophthalmol. 1974 Dec;13(12):959–966. [PubMed] [Google Scholar]
- Camras C. B., Bito L. Z. The pathophysiological effects of nitrogen mustard on the rabbit eye. II. The inhibition of the initial hypertensive phase by capsaicin and the apparent role of substance P. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):423–428. [PubMed] [Google Scholar]
- Eakins K. E., Whitelocke R. A., Perkins E. S., Bennett A., Unger W. G. Release of prostaglandins in ocular inflammation in the rabbit. Nat New Biol. 1972 Oct 25;239(95):248–249. doi: 10.1038/newbio239248a0. [DOI] [PubMed] [Google Scholar]
- Floman N., Zor U. Mechanism of steroid action in ocular inflammation: Inhibition of prostaglandin production. Invest Ophthalmol Vis Sci. 1977 Jan;16(1):69–73. [PubMed] [Google Scholar]
- Friedlaender M. H., Howes E. L., Jr, Hall J. M., Krasnobrod H., Wormstead M. A. Histopathology of delayed hypersensitivity reacitons in the guinea pig uveal tract. Invest Ophthalmol Vis Sci. 1978 Apr;17(4):327–335. [PubMed] [Google Scholar]
- Gaynor E. The role of granulocytes in endotoxin-induced vascular injury. Blood. 1973 Jun;41(6):797–808. [PubMed] [Google Scholar]
- Heflin A. C., Jr, Brigham K. L. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J Clin Invest. 1981 Nov;68(5):1253–1260. doi: 10.1172/JCI110371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson P. M., Larsen G. L., Webster R. O., Mitchell B. C., Goins A. J., Henson J. E. Pulmonary microvascular alterations and injury induced by complement fragments: synergistic effect of complement activation, neutrophil sequestration, and prostaglandins. Ann N Y Acad Sci. 1982;384:287–300. doi: 10.1111/j.1749-6632.1982.tb21379.x. [DOI] [PubMed] [Google Scholar]
- Henson P. M., Zanolari B., Schwartzman N. A., Hong S. R. Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin B. J Immunol. 1978 Sep;121(3):851–855. [PubMed] [Google Scholar]
- Howes E. L., Jr, Aronson S. B., McKay D. G. Ocular vascular permeability. Effect of systemic administration of bacterial endotoxin. Arch Ophthalmol. 1970 Sep;84(3):360–367. doi: 10.1001/archopht.1970.00990040362017. [DOI] [PubMed] [Google Scholar]
- Howes E. L., Jr, Morrison D. C. Lipid A dependence of the ocular response to circulating endotoxin in rabbits. Infect Immun. 1980 Dec;30(3):786–790. doi: 10.1128/iai.30.3.786-790.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphrey D. M., Hanahan D. J., Pinckard R. N. Induction of leukocytic infiltrates in rabbit skin by acetyl glyceryl ether phosphorylcholine. Lab Invest. 1982 Sep;47(3):227–234. [PubMed] [Google Scholar]
- Issekutz A. C., Movat H. Z. The effect of vasodilator prostaglandins on polymorphonuclear leukocyte infiltration and vascular injury. Am J Pathol. 1982 Jun;107(3):300–309. [PMC free article] [PubMed] [Google Scholar]
- Jensen P. R., Aronson S. B., Pollycove M., Yamamoto E. Mechanisms of host response in the eye. 3. Interocular protein transfer. Arch Ophthalmol. 1967 Jun;77(6):814–817. doi: 10.1001/archopht.1967.00980020816021. [DOI] [PubMed] [Google Scholar]
- Kopaniak M. M., Movat H. Z. Kinetics of acute inflammation induced by Escherichia coli in rabbits. II. The effect of hyperimmunization, complement depletion, and depletion of leukocytes. Am J Pathol. 1983 Jan;110(1):13–29. [PMC free article] [PubMed] [Google Scholar]
- Miller J. D., Eakins K. E., Atwal M. The release of PGE2-like activity into aqueous humor after paracentesis and its prevention by aspirin. Invest Ophthalmol. 1973 Dec;12(12):939–942. [PubMed] [Google Scholar]
- Mondino B. J., Rao H. Complement levels in normal and inflamed aqueous humor. Invest Ophthalmol Vis Sci. 1983 Mar;24(3):380–384. [PubMed] [Google Scholar]
- Mondino B. J., Ratajczak H. V., Goldberg D. B., Schanzlin D. J., Brown S. I. Alternate and classical pathway components of complement in the normal cornea. Arch Ophthalmol. 1980 Feb;98(2):346–349. doi: 10.1001/archopht.1980.01020030342023. [DOI] [PubMed] [Google Scholar]
- Morrison D. C., Ulevitch R. J. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol. 1978 Nov;93(2):526–618. [PMC free article] [PubMed] [Google Scholar]
- Müller-Berghaus G., Lohmann E. The role of complement in endotoxin-induced disseminated intravascular coagulation: studies in congenitally C6-deficient rabbits. Br J Haematol. 1974 Nov;28(3):403–418. doi: 10.1111/j.1365-2141.1974.tb00821.x. [DOI] [PubMed] [Google Scholar]
- Perez H. D., Ong R., Khanna K., Banda D., Goldstein I. M. Wheat germ agglutinin specifically inhibits formyl peptide-induced polymorphonuclear leukocyte chemotaxis. J Immunol. 1982 Dec;129(6):2718–2724. [PubMed] [Google Scholar]
- Rosenbaum J. T., Wong K., Perez H. D., Raymond W., Howes E. L., Jr Characterization of endotoxin-induced C5-derived chemotactic activity in aqueous humor. Invest Ophthalmol Vis Sci. 1984 Oct;25(10):1184–1191. [PubMed] [Google Scholar]
- Saldeen T. Fibrin derived peptides as mediators of increased vascular permeability. Acta Chir Scand Suppl. 1980;499:67–72. [PubMed] [Google Scholar]
- Sauder D. N., Mounessa N. L., Katz S. I., Dinarello C. A., Gallin J. I. Chemotactic cytokines: the role of leukocytic pyrogen and epidermal cell thymocyte-activating factor in neutrophil chemotaxis. J Immunol. 1984 Feb;132(2):828–832. [PubMed] [Google Scholar]
- Ulevitch R. J., Cochrane C. G., Henson P. M., Morrison D. C., Doe W. F. Mediation systems in bacterial lipopolysaccharide-induced hypotension and disseminated intravascular coagulation. I. The role of complement. J Exp Med. 1975 Dec 1;142(6):1570–1590. doi: 10.1084/jem.142.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulevitch R. J., Cochrane C. G. Role of complement in lethal bacterial lipopolysaccharide-induced hypotensive and coagulative changes. Infect Immun. 1978 Jan;19(1):204–211. doi: 10.1128/iai.19.1.204-211.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster R. O., Larsen G. L., Henson P. M. In vivo clearance and tissue distribution of C5a and C5a des arginine complement fragments in rabbits. J Clin Invest. 1982 Dec;70(6):1177–1183. doi: 10.1172/JCI110716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webster R. O., Larsen G. L., Mitchell B. C., Goins A. J., Henson P. M. Absence of inflammatory lung injury in rabbits challenged intravascularly with complement-derived chemotactic factors. Am Rev Respir Dis. 1982 Mar;125(3):335–340. doi: 10.1164/arrd.1982.125.3.335. [DOI] [PubMed] [Google Scholar]
- Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
- Whaley K. Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral blood monocytes. J Exp Med. 1980 Mar 1;151(3):501–516. doi: 10.1084/jem.151.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]