Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1985 May;119(2):191–198.

Avian tibial dyschondroplasia. II. Biochemical changes.

B D Freedman, C V Gay, R M Leach
PMCID: PMC1887895  PMID: 3993738

Abstract

Biochemical parameters (dry matter, DNA, protein, cAMP, and calmodulin) were measured in tibial dyschondroplastic (TD) cartilage. This abnormal cartilage, which is a mass of unmineralized, unvascularized cartilage found in the proximal metaphysis of the tibiotarsus and tarsometatarsus, was compared with normal epiphyseal growth plate and hypertrophic cartilage obtained from day-old embryonic cone. The latter tissue is an example of cartilage which rapidly undergoes vascularization and mineralization. When compared with normal growth plate, tibial dyschondroplastic cartilage was found to contain lower amounts of dry matter, DNA, protein, cAMP, and calmodulin. This cartilage did not respond to factors in serum which stimulate 35S uptake. Although the above two types of cartilage contained similar amounts of ash, TD cartilage had less phosphorus and potassium and more sodium than the growth plate. The two types of cartilage had similar lysozyme activity and proteoglycan (hexosamine) content. In many of the parameters measured, day-old hypertrophic cartilage was similar to the normal growth plate. However, these tissues did differ in DNA, protein, ash, and lysozyme content. Substantially greater amounts of ash and lysozyme were found in the hypertrophic cartilage, which appeared to be related to events of mineralization and vascularization of this cartilage. These events did not occur in the abnormal cartilage cells found in the tibial dyschondroplastic lesion.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOAS N. F. Method for the determination of hexosamines in tissues. J Biol Chem. 1953 Oct;204(2):553–563. [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boskey A. L. Current concepts of the physiology and biochemistry of calcification. Clin Orthop Relat Res. 1981 Jun;(157):225–257. [PubMed] [Google Scholar]
  4. Bourret L. A., Rodan G. A. The role of calcium in the inhibition of cAMP accumulation in epiphyseal cartilage cells exposed to physiological pressure. J Cell Physiol. 1976 Jul;88(3):353–361. doi: 10.1002/jcp.1040880311. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Burch W. M., Lebovitz H. E. Adenosine 3',5'-monophosphate: a modulator of embryonic chick cartilage growth. J Clin Invest. 1981 Dec;68(6):1496–1502. doi: 10.1172/JCI110403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHURCH L. E., JOHNSON L. C. GROWTH OF LONG BONES IN THE CHICKEN. RATES OF GROWTH IN LENGTH AND DIAMETER OF THE HUMERUS, TIBIA, AND METATARSUS. Am J Anat. 1964 May;114:521–538. doi: 10.1002/aja.1001140310. [DOI] [PubMed] [Google Scholar]
  8. Cheung W. Y. Calmodulin: an overview. Fed Proc. 1982 May;41(7):2253–2257. [PubMed] [Google Scholar]
  9. Choi H. U., Tang L. H., Johnson T. L., Pal S., Rosenberg L. C., Reiner A., Poole A. R. Isolation and characterization of a 35,000 molecular weight subunit fetal cartilage matrix protein. J Biol Chem. 1983 Jan 10;258(1):655–661. [PubMed] [Google Scholar]
  10. Drezner M. K., Eisenbarth G. S., Neelon F. A., Lebovitz H. E. Stimulation of cartilage amino acid uptake by growth hormone-dependent factors in serum. Mediation by adenosine 3':5'-monophosphate. Biochim Biophys Acta. 1975 Feb 13;381(2):384–396. doi: 10.1016/0304-4165(75)90244-5. [DOI] [PubMed] [Google Scholar]
  11. Drezner M. K., Neelon F. A., Lebovitz H. E. Stimulation of cartilage macromolecule synthesis by adenosine 3',5'-monophosphate. Biochim Biophys Acta. 1976 Apr 2;425(4):521–531. doi: 10.1016/0005-2787(76)90016-2. [DOI] [PubMed] [Google Scholar]
  12. Gahagan J. H., Martin R. J., Leach R. M. Serum somatomedin activity in two animal models as measured using chick epiphyseal plate cartilage bioassay. Proc Soc Exp Biol Med. 1980 Apr;163(4):455–460. doi: 10.3181/00379727-163-40796. [DOI] [PubMed] [Google Scholar]
  13. Greenwald R. A., Schwartz C. Complex formation between lysozyme and cartilage proteoglycans. Biochim Biophys Acta. 1974 Jul 7;359(1):66–72. doi: 10.1016/0005-2795(74)90132-9. [DOI] [PubMed] [Google Scholar]
  14. Hargest T. E., Gay C. V., Leach R. M. Avian tibial dyschondroplasia. III. Electron probe analysis. Am J Pathol. 1985 May;119(2):199–209. [PMC free article] [PubMed] [Google Scholar]
  15. Hargest T. E., Leach R. M., Gay C. V. Avian tibial dyschondroplasia. I. Ultrastructure. Am J Pathol. 1985 May;119(2):175–190. [PMC free article] [PubMed] [Google Scholar]
  16. Hsieh M. C., Berry H. K. Measurement of trypsin-like activity of saliva, serum and meconium by a synthetic substrate carbobenzoxy-L-arginine-7-amino-4-methylcoumarin amide (CAMCA). Clin Chim Acta. 1984 Apr 13;138(2):221–227. doi: 10.1016/0009-8981(84)90237-7. [DOI] [PubMed] [Google Scholar]
  17. Knight J. A., Stephens R. W., Bushell G. R., Ghosh P., Taylor T. K. Neutral protease inhibitors from human intervertebral disc and femoral head articular cartilage. Biochim Biophys Acta. 1979 May 1;584(2):304–310. doi: 10.1016/0304-4165(79)90276-9. [DOI] [PubMed] [Google Scholar]
  18. Kuettner K. E., Croxen R. L., Eisenstein R., Sorgente N. Proteinase inhibitor activity in connective tissues. Experientia. 1974 Jun 15;30(6):595–597. doi: 10.1007/BF01921492. [DOI] [PubMed] [Google Scholar]
  19. Kuettner K. E., Eisenstein R., Sorgente N. Lysozyme in calcifying tissues. Clin Orthop Relat Res. 1975 Oct;(112):316–339. [PubMed] [Google Scholar]
  20. Kuettner K. E., Eisenstein R., Sorgente N. Lysozyme in calcifying tissues. Clin Orthop Relat Res. 1975 Oct;(112):316–339. [PubMed] [Google Scholar]
  21. Kuettner K. E., Soble L. W., Eisenstein R., Yaeger J. A. The influence of lysozyme on the appearance of epiphyseal cartilage in organ culture. Calcif Tissue Res. 1968 Jul 15;2(1):93–105. doi: 10.1007/BF02279198. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Langer R., Brem H., Falterman K., Klein M., Folkman J. Isolations of a cartilage factor that inhibits tumor neovascularization. Science. 1976 Jul 2;193(4247):70–72. doi: 10.1126/science.935859. [DOI] [PubMed] [Google Scholar]
  24. Lewinson D., Boskey A. L. Calmodulin localization in bone and cartilage. Cell Biol Int Rep. 1984 Jan;8(1):11–18. doi: 10.1016/0309-1651(84)90176-0. [DOI] [PubMed] [Google Scholar]
  25. Lilburn M. S., Leach R. M., Jr Metabolism of abnormal cartilage cells associated with tibial dyschondroplasia. Poult Sci. 1980 Aug;59(8):1892–1896. doi: 10.3382/ps.0591892. [DOI] [PubMed] [Google Scholar]
  26. Lowther D. A., Robinson H. C., Dolman J. W., Thomas K. W. Cartilage matrix components in chickens with tibial dyschondroplasia. J Nutr. 1974 Jul;104(7):922–929. doi: 10.1093/jn/104.7.922. [DOI] [PubMed] [Google Scholar]
  27. Matukas V. J., Krikos G. A. Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J Cell Biol. 1968 Oct;39(1):43–48. doi: 10.1083/jcb.39.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Phillips L. S., Vassilopoulou-Sellin R. Somatomedins (first of two parts). N Engl J Med. 1980 Feb 14;302(7):371–380. doi: 10.1056/NEJM198002143020704. [DOI] [PubMed] [Google Scholar]
  29. Pita J. C., Cuervo L. A., Madruga J. E., Muller F. J., Howell D. S. Evidence for a role of proteinpolysaccharides in regulation of mineral phase separation in calcifying cartilage. J Clin Invest. 1970 Dec;49(12):2188–2197. doi: 10.1172/JCI106437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Poole A. R., Pidoux I., Rosenberg L. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol. 1982 Feb;92(2):249–260. doi: 10.1083/jcb.92.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rifkin D. B., Crowe R. M. Isolation of a protease inhibitor from tissues resistant to tumor invasion. Hoppe Seylers Z Physiol Chem. 1977 Dec;358(12):1525–1531. doi: 10.1515/bchm2.1977.358.2.1525. [DOI] [PubMed] [Google Scholar]
  32. Schmid T. M., Mayne R., Bruns R. R., Linsenmayer T. F. Molecular structure of short-chain (SC) cartilage collagen by electron microscopy. J Ultrastruct Res. 1984 Feb;86(2):186–191. doi: 10.1016/s0022-5320(84)80057-x. [DOI] [PubMed] [Google Scholar]
  33. Schmidt A., Rodegerdts U., Buddecke E. Correlation of lysozyme activity with proteoglycan biosynthesis in epiphyseal cartilage. Calcif Tissue Res. 1978 Dec 8;26(2):163–172. doi: 10.1007/BF02013252. [DOI] [PubMed] [Google Scholar]
  34. Sharma R. K., Wang J. H. Preparation and assay of the Ca2+--dependent modulator protein. Adv Cyclic Nucleotide Res. 1979;10:187–198. [PubMed] [Google Scholar]
  35. Siller W. G. Tibial dyschondroplasia in the fowl. J Pathol. 1970 May;101(1):39–46. doi: 10.1002/path.1711010105. [DOI] [PubMed] [Google Scholar]
  36. Silvestrini G., Ricordi M. E., Bonucci E. Resorption of uncalcified cartilage in the diaphysis of the chick embryo tibia. Cell Tissue Res. 1979 Feb 15;196(2):221–235. doi: 10.1007/BF00240098. [DOI] [PubMed] [Google Scholar]
  37. Sorgente N., Hascall V. C., Kuettner K. E. Extractability of lysozyme from bovine nasal cartilage. Biochim Biophys Acta. 1972 Oct 12;284(2):441–450. doi: 10.1016/0005-2744(72)90141-6. [DOI] [PubMed] [Google Scholar]
  38. Sorrell J. M., Weiss L. A light and electron microscopic study of the region of cartilage resorption in the embryonic chick femur. Anat Rec. 1980 Nov;198(3):513–530. doi: 10.1002/ar.1091980312. [DOI] [PubMed] [Google Scholar]
  39. Taylor S., Folkman J. Protamine is an inhibitor of angiogenesis. Nature. 1982 May 27;297(5864):307–312. doi: 10.1038/297307a0. [DOI] [PubMed] [Google Scholar]
  40. Trump B. F., Berezesky I. K., Laiho K. U., Osornio A. R., Mergner W. J., Smith M. W. The role of calcium in cell injury. A review. Scan Electron Microsc. 1980;(Pt 2):437-62, 492. [PubMed] [Google Scholar]
  41. Veldhuijzen J. P., Bourret L. A., Rodan G. A. In vitro studies of the effect of intermittent compressive forces on cartilage cell proliferation. J Cell Physiol. 1979 Feb;98(2):299–306. doi: 10.1002/jcp.1040980206. [DOI] [PubMed] [Google Scholar]
  42. Woodward C., Davidson E. A. Structure-function relationships of protein polysaccharide complexes: specific ion-binding properties. Proc Natl Acad Sci U S A. 1968 May;60(1):201–205. doi: 10.1073/pnas.60.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wuthier R. E. A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Relat Res. 1982 Sep;(169):219–242. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES