Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1985 Mar;118(3):398–407.

Effects of the aminonucleoside of puromycin on glomerular epithelial cells in vitro.

J A Fishman, M J Karnovsky
PMCID: PMC1887951  PMID: 3976843

Abstract

Glomerular epithelial cells (GECs) in vitro provide a useful model for the study of the mechanism(s) underlying the nephrotic syndrome of rats induced by the aminonucleoside of puromycin (PAN). Some of the toxicities of PAN are nonspecific, in that the constituent molecules of PAN (adenosine and puromycin) cause similar effects in vitro. These include GEC blebbing and rounding, reduced uptake of precursors of protein (leucine) and glycoprotein (glucosamine) synthesis, and increased permeability of the GEC membrane to adenosine. Some of the effects of PAN are not reproduced by adenosine or puromycin and are inhibited by the simultaneous presence of N6-monomethyl adenosine (MMA), a PAN analog and an in vivo blocker of nephrosis due to PAN. These processes may be related to the nephrotic syndrome and include the loss of adhesion to plastic; a reduction in the incorporation of 14C-glucosamine and 35S-sulfate both into molecules removable from the GEC surface by neuraminidase and into those moieties precipitated from the culture media by TCA; a marked reduction in the "ordering" of the lipids of the rigid GEC membrane, which is possibly dependent upon cell-surface proteins. These morphologic alterations in GECs and in the distribution of negatively charged molecules, which are either secreted or on the cell surface, correlate with observations made in PAN-induced nephrosis in rats in vivo. These include changes in the turnover and the array of sialic acid and heparan sulfate glycoprotein on the GECs and the glomerular basement membrane. The in vitro sensitivity of GECs to PAN and the effects of MMA suggest a role for these cells in in vivo aminonucleoside nephrotoxicity, where alterations in both the morphology and the anionic topology of GECs participate in the development of proteinuria.

Full text

PDF
398

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER C. S., HUNT V. R. Inhibition of aminonucleoside nephrosis in rats. II. Effect of nucleic acid precursors and L-triiodothyronine. Proc Soc Exp Biol Med. 1961 Dec;108:706–709. doi: 10.3181/00379727-108-27042. [DOI] [PubMed] [Google Scholar]
  2. ALEXANDER C. S., NAGASAWA H. T., FILBIN D. Distribution and excretion of aminonucleoside-8-C14 in normal and nephrotic rats. Proc Soc Exp Biol Med. 1962 Nov;111:521–526. doi: 10.3181/00379727-111-27842. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. M. The effect of vinblastine-induced microtubule loss on kidney podocyte morphology. Am J Anat. 1977 Sep;150(1):53–61. doi: 10.1002/aja.1001500104. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. BOROWSKY B. A., KESSNER D. M., RECANT L. Structural analogues of puromycin in production of experimental nephrosis in rats. Proc Soc Exp Biol Med. 1958 Apr;97(4):857–860. doi: 10.3181/00379727-97-23900. [DOI] [PubMed] [Google Scholar]
  6. Barnes D. W., Brown V. T., Colowick S. P. Inhibition of sugar uptake in adenosine-treated 3T3 cells. J Cell Physiol. 1978 Nov;97(2):231–239. doi: 10.1002/jcp.1040970212. [DOI] [PubMed] [Google Scholar]
  7. Barnes J. L., Radnik R. A., Gilchrist E. P., Venkatachalam M. A. Size and charge selective permeability defects induced in glomerular basement membrane by a polycation. Kidney Int. 1984 Jan;25(1):11–19. doi: 10.1038/ki.1984.2. [DOI] [PubMed] [Google Scholar]
  8. Blau E. B., Haas J. E. Glomerular sialic acid and proteinuria in human renal disease. Lab Invest. 1973 Apr;28(4):477–481. [PubMed] [Google Scholar]
  9. Blau E. B., Michael A. F. Rat glomerular glycoprotein composition and metabolism in aminonucleoside nephrosis. Proc Soc Exp Biol Med. 1972 Oct;141(1):164–172. doi: 10.3181/00379727-141-36737. [DOI] [PubMed] [Google Scholar]
  10. Blau E., Michael A. F. Rat glomerular basement membrane composition and metabolism in aminonucleoside nephrosis. J Lab Clin Med. 1971 Jan;77(1):97–109. [PubMed] [Google Scholar]
  11. Blume A. J., Dalton C., Sheppard H. Adenosine-mediated elevation of cyclic 3':5'-adenosine monophosphate concentrations in cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3099–3102. doi: 10.1073/pnas.70.11.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bohrer M. P., Baylis C., Robertson C. R., Brenner B. M., Troy J. L., Willis W. T. Mechanisms of the puromycin-induced defects in the transglomerular passage of water and macromolecules. J Clin Invest. 1977 Jul;60(1):152–161. doi: 10.1172/JCI108751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bray J., Robinson G. B. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int. 1984 Mar;25(3):527–533. doi: 10.1038/ki.1984.49. [DOI] [PubMed] [Google Scholar]
  14. Brown D. M., Michael A. F., Oegema T. R. Glycosaminoglycan synthesis by glomeruli in vivo and in vitro. Biochim Biophys Acta. 1981 Apr 17;674(1):96–104. doi: 10.1016/0304-4165(81)90351-2. [DOI] [PubMed] [Google Scholar]
  15. Burlington H., Cronkite E. P. Characteristics of cell cultures derived from renal glomeruli. Proc Soc Exp Biol Med. 1973 Jan;142(1):143–149. doi: 10.3181/00379727-142-36977. [DOI] [PubMed] [Google Scholar]
  16. Caulfield J. P. Alterations in the distribution of Alcian blue-staining fibrillar anionic sites in the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1979 Apr;40(4):503–511. [PubMed] [Google Scholar]
  17. Caulfield J. P., Farquhar M. G. Distribution of annionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci U S A. 1976 May;73(5):1646–1650. doi: 10.1073/pnas.73.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Caulfield J. P., Farquhar M. G. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1978 Nov;39(5):505–512. [PubMed] [Google Scholar]
  19. Caulfield J. P., Reid J. J., Farquhar M. G. Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest. 1976 Jan;34(1):43–59. [PubMed] [Google Scholar]
  20. Cholon J. J., Studzinski G. P. Metabolic differences between normal and neoplastic cells: effects of aminonucleoside on cytoplasmic messenger RNA. Science. 1974 Apr 12;184(4133):160–161. doi: 10.1126/science.184.4133.160. [DOI] [PubMed] [Google Scholar]
  21. Chow A. Y., Drummond K. N. Incorporation and hydroxylation of proline-3-4-H3 as an index of glomerular basement membrane synthesis in normal and nephrotoxic nephritic rats. Lab Invest. 1969 Mar;20(3):213–218. [PubMed] [Google Scholar]
  22. Cohen A. H., Mampaso F., Zamboni L. Glomerular podocyte degeneration in human renal disease: an ultrastructural study. Lab Invest. 1977 Jul;37(1):30–42. [PubMed] [Google Scholar]
  23. Cohen M. P., Surma M. L. [(35)S]sulfate incorporation into glomerular basement membrane glycosaminoglycans is decreased in experimental diabetes. J Lab Clin Med. 1981 Nov;98(5):715–722. [PubMed] [Google Scholar]
  24. Derr R. F., Alexander C. S., Nagasawa H. T. Metabolism of puromycin aminonucleoside in the normal, "pre-nephrotic," and nephrotic rat. Proc Soc Exp Biol Med. 1967 May;125(1):248–252. doi: 10.3181/00379727-125-32061. [DOI] [PubMed] [Google Scholar]
  25. Derr R. F., Loechler D. K., Alexander C. S., Nagasawa H. T. Inhibition of aminonucleoside nephrosis in rats. IV. Prevention by N6-methyladenosine. J Lab Clin Med. 1968 Sep;72(3):363–369. [PubMed] [Google Scholar]
  26. Elsas L. J., Rosenberg L. E. Inhibition of amino Acid transport in rat kidney cortex by puromycin. Proc Natl Acad Sci U S A. 1967 Feb;57(2):371–378. doi: 10.1073/pnas.57.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. FARQUHAR M. G., PALADE G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961 Nov 1;114:699–716. doi: 10.1084/jem.114.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. FELDMAN J. D., FISHER E. R. Renal lesions of aminonucleoside nephrosis as revealed by electron microscopy. Lab Invest. 1959 Mar-Apr;8(2):371–385. [PubMed] [Google Scholar]
  29. FIEGELSON E. B., DRAKE J. W., RECANT L. Experimental aminonucleoside nephrosis in rats. J Lab Clin Med. 1957 Sep;50(3):437–446. [PubMed] [Google Scholar]
  30. FRENK S., ANTONOWICZ I., CRAIG J. M., METCOFF J. Experimental nephrotic syndrome induced in rats by aminonucleoside; renal lesions and body electrolyte composition. Proc Soc Exp Biol Med. 1955 Jul;89(3):424–427. doi: 10.3181/00379727-89-21833. [DOI] [PubMed] [Google Scholar]
  31. Farnham A. E., Dubin D. T. Effect of puromycin aminonucleoside on RNA synthesis in L cells. J Mol Biol. 1965 Nov;14(1):55–62. doi: 10.1016/s0022-2836(65)80229-7. [DOI] [PubMed] [Google Scholar]
  32. Fox I. H., Kelley W. N. The role of adenosine and 2'-deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655–686. doi: 10.1146/annurev.bi.47.070178.003255. [DOI] [PubMed] [Google Scholar]
  33. GORSKI J., AIZAWA Y., MUELLER G. C. Effect of puromycin in vivo on the synthesis of protein, RNA and phospholipids in rat tissues. Arch Biochem Biophys. 1961 Dec;95:508–511. doi: 10.1016/0003-9861(61)90183-7. [DOI] [PubMed] [Google Scholar]
  34. Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
  35. HARTMAN M. E., HARTMAN J. D., BALDRIDGE R. C. Inhibition of aminonucleoside nephrosis by adenine. Proc Soc Exp Biol Med. 1959 Jan;100(1):152–155. doi: 10.3181/00379727-100-24556. [DOI] [PubMed] [Google Scholar]
  36. Inbar M., Goldman R., Inbar L., Bursuker I., Goldman B., Akstein E., Segal P., Ipp E., Ben-Bassat I. Fluidity difference of membrane lipids in human normal and leukemic lymphocytes as controlled by serum components. Cancer Res. 1977 Sep;37(9):3037–3041. [PubMed] [Google Scholar]
  37. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kanwar Y. S., Jakubowski M. L. Unaltered anionic sites of glomerular basement membrane in aminonucleoside nephrosis. Kidney Int. 1984 Apr;25(4):613–618. doi: 10.1038/ki.1984.65. [DOI] [PubMed] [Google Scholar]
  42. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kanwar Y. S., Rosenzweig L. J. Altered glomerular permeability as a result of focal detachment of the visceral epithelium. Kidney Int. 1982 Apr;21(4):565–574. doi: 10.1038/ki.1982.63. [DOI] [PubMed] [Google Scholar]
  44. Kanwar Y. S., Rosenzweig L. J., Kerjaschki D. I. Glycosaminoglycans of the glomerular basement membrane in normal and nephrotic states. Ren Physiol. 1981;4(2-3):121–130. doi: 10.1159/000172816. [DOI] [PubMed] [Google Scholar]
  45. Karnovsky M. J. The ultrastructure of glomerular filtration. Annu Rev Med. 1979;30:213–224. doi: 10.1146/annurev.me.30.020179.001241. [DOI] [PubMed] [Google Scholar]
  46. Klein D. J., Dehnel P. J., Oegema T. R., Brown D. M. Alterations in proteoglycan metabolism in the nephrotic syndrome induced by the aminonucleoside of puromycin. Lab Invest. 1984 May;50(5):543–551. [PubMed] [Google Scholar]
  47. Kreisberg J. I., Hoover R. L., Karnovsky M. J. Isolation and characterization of rat glomerular epithelial cells in vitro. Kidney Int. 1978 Jul;14(1):21–30. doi: 10.1038/ki.1978.86. [DOI] [PubMed] [Google Scholar]
  48. Kühn K., Ryan G. B., Hein S. J., Galaske R. G., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in rat nephrotoxic nephritis. Lab Invest. 1977 Apr;36(4):375–387. [PubMed] [Google Scholar]
  49. Landsberger F. R., Compans R. W. Effect of membrane protein on lipid bilayer structure: a spin-label electron spin resonance study of vesicular stomatitis virus. Biochemistry. 1976 Jun 1;15(11):2356–2360. doi: 10.1021/bi00656a017. [DOI] [PubMed] [Google Scholar]
  50. Makan N. R., Heppel L. A. Control of glycolysis and the pentose phosphate shunt in transformed 3T3 cultures rendered permeable by ATP. J Cell Physiol. 1978 Jul;96(1):87–94. doi: 10.1002/jcp.1040960111. [DOI] [PubMed] [Google Scholar]
  51. Marone G., Plaut M., Lichtenstein L. M. Characterization of a specific adenosine receptor on human lymphocytes. J Immunol. 1978 Dec;121(6):2153–2159. [PubMed] [Google Scholar]
  52. Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
  53. Nagasawa H. T., Swingle K. F., Alexander C. S. Metabolism of aminonucleoside-8-14C in the rat and guinea pig. Biochem Pharmacol. 1967 Nov;16(11):2211–2219. doi: 10.1016/0006-2952(67)90020-2. [DOI] [PubMed] [Google Scholar]
  54. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rennke H. G., Venkatachalam M. A. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 1977 Jan;11(1):44–53. doi: 10.1038/ki.1977.6. [DOI] [PubMed] [Google Scholar]
  56. Rozengurt E., Heppel L. A., Friedberg I. Effect of exogenous ATP on the permeability properties of transformed cultures of mouse cell lines. J Biol Chem. 1977 Jul 10;252(13):4584–4590. [PubMed] [Google Scholar]
  57. Ryan G. B., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int. 1975 Oct;8(4):219–232. doi: 10.1038/ki.1975.105. [DOI] [PubMed] [Google Scholar]
  58. Ryan G. B., Rodewald R., Karnovsky M. J. An ultrastructural study of the glomerular slit diaphragm in aminonucleoside nephrosis. Lab Invest. 1975 Nov;33(5):461–468. [PubMed] [Google Scholar]
  59. Sandermann H., Jr Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978 Sep 29;515(3):209–237. doi: 10.1016/0304-4157(78)90015-1. [DOI] [PubMed] [Google Scholar]
  60. Sarkadi B., Szász I., Gárdos G. The use of ionophores of rapid loading of human red cells with radioactive cations for cation-pump studies. J Membr Biol. 1976 May;26(4):357–370. doi: 10.1007/BF01868883. [DOI] [PubMed] [Google Scholar]
  61. Seiler M. W., Rennke H. G., Venkatachalam M. A., Cotran R. S. Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. Lab Invest. 1977 Jan;36(1):48–61. [PubMed] [Google Scholar]
  62. Shinitzky M., Inbar M. Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol. 1974 Jan 5;85(4):603–615. doi: 10.1016/0022-2836(74)90318-0. [DOI] [PubMed] [Google Scholar]
  63. Striker G. E., Killen P. D., Farin F. M. Human glomerular cells in vitro: isolation and characterization. Transplant Proc. 1980 Sep;12(3 Suppl 1):88–99. [PubMed] [Google Scholar]
  64. Studzinski G. P., Ellem K. A. Differences between diploid and heteroploid cultured mammalian cells in their response to puromycin aminonucleoside. Cancer Res. 1968 Sep;28(9):1773–1782. [PubMed] [Google Scholar]
  65. Symons R. H., Harris R. J., Clarke L. P., Wheldrake J. F., Elliott W. H. Structural requirements of inhibition of polyphenylalanine synthesis by aminoacyl and nucleotidyl analogues of puromycin. Biochim Biophys Acta. 1969 Mar 18;179(1):248–250. doi: 10.1016/0005-2787(69)90146-4. [DOI] [PubMed] [Google Scholar]
  66. Vernier R. L., Klein D. J., Sisson S. P., Mahan J. D., Oegema T. R., Brown D. M. Heparan sulfate--rich anionic sites in the human glomerular basement membrane. Decreased concentration in congenital nephrotic syndrome. N Engl J Med. 1983 Oct 27;309(17):1001–1009. doi: 10.1056/NEJM198310273091701. [DOI] [PubMed] [Google Scholar]
  67. WILSON S. G., HACKEL D. B., HORWOOD S., NASH G., HEYMANN W. Aminonucleoside nephrosis in rats. Pediatrics. 1958 Jun;21(6):963–973. [PubMed] [Google Scholar]
  68. WILSON S. G., HEYMANN W., GOLDTHWAIT D. A. Studies on the mechanism of production of a nephrotic syndrome in rats by a nucleoside. Pediatrics. 1960 Feb;25:228–241. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES