Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Feb;122(2):205–211.

Alveolar macrophage stimulation of lung fibroblast growth in asbestos-induced pulmonary fibrosis.

I Lemaire, H Beaudoin, S Massé, C Grondin
PMCID: PMC1888101  PMID: 3946556

Abstract

Asbestotic lesions are characterized by macrophagic accumulation, fibroblast proliferation, and collagen deposition. To evaluate the potential involvement of alveolar macrophages in the subsequent fibrogenic reaction, the authors studied the effects of macrophages from normal and asbestos-treated rats upon lung fibroblast proliferation in vitro. Culture supernatants from bronchoalveolar (BAL) cells (99% macrophages) of normal rats stimulated lung fibroblast DNA synthesis and growth in a dose-dependent manner. Fibroblast growth factor (FGF) release by alveolar macrophages (AMs) was rapid (within 1 hour of incubation) and dependent on the number of AMs in culture. Moreover, culture supernatants from BAL cells of animals exposed to asbestos (single intratracheal injection) stimulated fibroblast proliferation to a greater degree than culture supernatants from BAL cells of control animals. Enhanced FGF production occurred 1 week after asbestos instillation and persisted up to 24 weeks. This change was accompanied in the early stages (1-4 weeks) by an increase in the total number of BAL cells which returned to control values by 12 weeks. Differential analysis of BAL cell populations showed a transient infiltration of neutrophils in the bronchoalveolar compartment followed by a significant accumulation of macrophages which persisted up to 1 month. Furthermore, lungs of asbestos-treated animals showed evidence of pathologic alterations characterized by fibroblast proliferation and collagen deposition. This study demonstrates that increased production of fibroblast growth factor by alveolar macrophages in vitro coincides with the development of asbestos-induced fibrosis. Prolonged stimulation of FGF release may contribute to excessive fibroblast proliferation and fibrosis.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becklake M. R. Asbestos-related diseases of the lung and other organs: their epidemiology and implications for clinical practice. Am Rev Respir Dis. 1976 Jul;114(1):187–227. doi: 10.1164/arrd.1976.114.1.187. [DOI] [PubMed] [Google Scholar]
  2. Bitterman P. B., Rennard S. I., Hunninghake G. W., Crystal R. G. Human alveolar macrophage growth factor for fibroblasts. Regulation and partial characterization. J Clin Invest. 1982 Oct;70(4):806–822. doi: 10.1172/JCI110677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brody A. R., Hill L. H., Adkins B., Jr, O'Connor R. W. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981 Jun;123(6):670–679. doi: 10.1164/arrd.1981.123.6.670. [DOI] [PubMed] [Google Scholar]
  4. Glenn K. C., Ross R. Human monocyte-derived growth factor(s) for mesenchymal cells: activation of secretion by endotoxin and concanavalin A. Cell. 1981 Sep;25(3):603–615. doi: 10.1016/0092-8674(81)90168-9. [DOI] [PubMed] [Google Scholar]
  5. HAYFLICK L., MOORHEAD P. S. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec;25:585–621. doi: 10.1016/0014-4827(61)90192-6. [DOI] [PubMed] [Google Scholar]
  6. Harington J. S., Allison A. C., Badami D. V. Mineral fibers: chemical, physicochemical, and biological properties. Adv Pharmacol Chemother. 1975;12(0):291–402. doi: 10.1016/s1054-3589(08)60223-9. [DOI] [PubMed] [Google Scholar]
  7. Heldin C. H., Westermark B., Wasteson A. Platelet-derived growth factor: purification and partial characterization. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3722–3726. doi: 10.1073/pnas.76.8.3722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henson P. M., Larsen G. L., Henson J. E., Newman S. L., Musson R. A., Leslie C. C. Resolution of pulmonary inflammation. Fed Proc. 1984 Oct;43(13):2799–2806. [PubMed] [Google Scholar]
  9. Larsen G. L., McCarthy K., Webster R. O., Henson J., Henson P. M. A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation. Am J Pathol. 1980 Jul;100(1):179–192. [PMC free article] [PubMed] [Google Scholar]
  10. Leibovich S. J., Ross R. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol. 1976 Sep;84(3):501–514. [PMC free article] [PubMed] [Google Scholar]
  11. Leibovich S. J., Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol. 1975 Jan;78(1):71–100. [PMC free article] [PubMed] [Google Scholar]
  12. Lemaire I., Nadeau D., Dunnigan J., Massé S. An assessment of the fibrogenic potential of very short 4T30 chrysotile by intratracheal instillation in rats. Environ Res. 1985 Apr;36(2):314–326. doi: 10.1016/0013-9351(85)90027-1. [DOI] [PubMed] [Google Scholar]
  13. Lemaire I., Rola-Pleszczynski M., Bégin R. Asbestos exposure enhances the release of fibroblast growth factor by sheep alveolar macrophages. J Reticuloendothel Soc. 1983 Apr;33(4):275–285. [PubMed] [Google Scholar]
  14. Lugano E. M., Dauber J. H., Elias J. A., Bashey R. I., Jimenez S. A., Daniele R. P. The regulation of lung fibroblast proliferation by alveolar macrophages in experimental silicosis. Am Rev Respir Dis. 1984 May;129(5):767–771. doi: 10.1164/arrd.1984.129.5.767. [DOI] [PubMed] [Google Scholar]
  15. Miller K. The effects of asbestos on macrophages. CRC Crit Rev Toxicol. 1978 Sep;5(4):319–354. doi: 10.3109/10408447809081010. [DOI] [PubMed] [Google Scholar]
  16. Morgan A., Talbot R. J., Holmes A. Significance of fibre length in the clearance of asbestos fibres from the lung. Br J Ind Med. 1978 May;35(2):146–153. doi: 10.1136/oem.35.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schmidt J. A., Mizel S. B., Cohen D., Green I. Interleukin 1, a potential regulator of fibroblast proliferation. J Immunol. 1982 May;128(5):2177–2182. [PubMed] [Google Scholar]
  18. Schoenberger C. I., Rennard S. I., Bitterman P. B., Fukuda Y., Ferrans V. J., Crystal R. G. Paraquat-induced pulmonary fibrosis. Role of the alveolitis in modulating the development of fibrosis. Am Rev Respir Dis. 1984 Jan;129(1):168–173. doi: 10.1164/arrd.1984.129.1.168. [DOI] [PubMed] [Google Scholar]
  19. Warheit D. B., Chang L. Y., Hill L. H., Hook G. E., Crapo J. D., Brody A. R. Pulmonary macrophage accumulation and asbestos-induced lesions at sites of fiber deposition. Am Rev Respir Dis. 1984 Feb;129(2):301–310. [PubMed] [Google Scholar]
  20. Wharton W., Walker E., Stewart C. C. Growth regulation by macrophages. Adv Exp Med Biol. 1982;155:249–260. doi: 10.1007/978-1-4684-4394-3_25. [DOI] [PubMed] [Google Scholar]
  21. Whitwell F., Scott J., Grimshaw M. Relationship between occupations and asbestos-fibre content of the lungs in patients with pleural mesothelioma, lung cancer, and other diseases. Thorax. 1977 Aug;32(4):377–386. doi: 10.1136/thx.32.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES