Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Jan;122(1):28–35.

Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma, and neuroblastoma.

M Mukai, C Torikata, H Iri, Y Morikawa, K Shimizu, T Shimoda, N Nukina, Y Ihara, K Kageyama
PMCID: PMC1888120  PMID: 3079958

Abstract

Intermediate filaments which are specific to neural cells, ie, neurofilaments, consist of three subcomponents--68, 150, and 200 kd. Thirty human neural tumors were examined for the presence of these three subcomponents by means of their monospecific antisera. All 8 paragangliomas contained cells that were positive for the 68-kd component, but only 5 of them had cells positive for the 150-kd and 200-kd components. All 4 ganglioneuromas and 11 ganglioneuroblastomas contained cells that reacted with antibodies to all three components. All 7 neuroblastomas had cells reacting with antibody to 68 kd, but only 3 of them had cells that reacted with antibodies to 150 kd and 200 kd. In each case, the number of positive cells depended on the antibody used. The largest number reacting with antibody to 68 kd and the smallest with antibody to 200 kd. Furthermore, it was possible to detect tumor cells in which the 68-kd subcomponent existed by itself, but no tumor cells in which the 150-kd or 200-kd subcomponent existed alone could be detected. These results seem to indicate that antibody to the 68-kd component is sufficiently discriminating to be applied diagnostically.

Full text

PDF
28

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983;25(2):193–203. doi: 10.1111/j.1432-0436.1984.tb01355.x. [DOI] [PubMed] [Google Scholar]
  2. Dräger U. C., Edwards D. L., Kleinschmidt J. Neurofilaments contain alpha-melanocyte-stimulating hormone (alpha-MSH)-like immunoreactivity. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6408–6412. doi: 10.1073/pnas.80.20.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldstein M. E., Sternberger L. A., Sternberger N. H. Microheterogeneity ("neurotypy") of neurofilament proteins. Proc Natl Acad Sci U S A. 1983 May;80(10):3101–3105. doi: 10.1073/pnas.80.10.3101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gown A. M., Vogel A. M. Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues. Am J Pathol. 1984 Feb;114(2):309–321. [PMC free article] [PubMed] [Google Scholar]
  6. Gown A. M., Vogel A. M. Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues. Am J Pathol. 1984 Feb;114(2):309–321. [PMC free article] [PubMed] [Google Scholar]
  7. Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
  8. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  10. Lee V. M., Page C. D., Wu H. L., Schlaepfer W. W. Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins. J Neurochem. 1984 Jan;42(1):25–32. doi: 10.1111/j.1471-4159.1984.tb09692.x. [DOI] [PubMed] [Google Scholar]
  11. Lehto V. P., Stenman S., Miettinen M., Dahl D., Virtanen I. Expression of a neural type of intermediate filament as a distinguishing feature between oat cell carcinoma and other lung cancers. Am J Pathol. 1983 Feb;110(2):113–118. [PMC free article] [PubMed] [Google Scholar]
  12. Lehto V. P., Virtanen I., Miettinen M., Dahl D., Kahri A. Neurofilaments in adrenal and extra-adrenal pheochromocytoma. Demonstration using immunofluorescence microscopy. Arch Pathol Lab Med. 1983 Sep;107(9):492–494. [PubMed] [Google Scholar]
  13. Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miettinen M., Lehto V. P., Badley R. A., Virtanen I. Alveolar rhabdomyosarcoma. Demonstration of the muscle type of intermediate filament protein, desmin, as a diagnostic aid. Am J Pathol. 1982 Aug;108(2):246–251. [PMC free article] [PubMed] [Google Scholar]
  15. Miettinen M., Lehto V. P., Virtanen I., Asko-Seljavaara S., Pitkänen J., Dahl D. Neuroendocrine carcinoma of the skin (Merkel cell carcinoma): ultrastructural and immunohistochemical demonstration of neurofilaments. Ultrastruct Pathol. 1983 Mar-Apr;4(2-3):219–225. doi: 10.3109/01913128309140792. [DOI] [PubMed] [Google Scholar]
  16. Mukai M., Torikata C., Hirose S., Murakami K., Kageyama K. Biochemical and immunohistochemical localization of renin in human pituitary. Lab Invest. 1984 Oct;51(4):425–428. [PubMed] [Google Scholar]
  17. Mukai M., Torikata C., Iri H., Hanaoka H., Kawai T., Yakumaru K., Shimoda T., Mikata A., Kageyama K. Cellular differentiation of epithelioid sarcoma. An electron-microscopic, enzyme-histochemical, and immunohistochemical study. Am J Pathol. 1985 Apr;119(1):44–56. [PMC free article] [PubMed] [Google Scholar]
  18. Mukai M., Torikata C., Iri H., Mikata A., Kawai T., Hanaoka H., Yakumaru K., Kageyama K. Histogenesis of clear cell sarcoma of tendons and aponeuroses. An electron-microscopic, biochemical, enzyme histochemical, and immunohistochemical study. Am J Pathol. 1984 Feb;114(2):264–272. [PMC free article] [PubMed] [Google Scholar]
  19. Osborn M., Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983 Apr;48(4):372–394. [PubMed] [Google Scholar]
  20. Pruss R. M., Mirsky R., Raff M. C., Thorpe R., Dowding A. J., Anderton B. H. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell. 1981 Dec;27(3 Pt 2):419–428. doi: 10.1016/0092-8674(81)90383-4. [DOI] [PubMed] [Google Scholar]
  21. Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
  22. Ramaekers F. C., Puts J. J., Moesker O., Kant A., Huysmans A., Haag D., Jap P. H., Herman C. J., Vooijs G. P. Antibodies to intermediate filament proteins in the immunohistochemical identification of human tumours: an overview. Histochem J. 1983 Jul;15(7):691–713. doi: 10.1007/BF01002988. [DOI] [PubMed] [Google Scholar]
  23. Rungger-Brändle E., Gabbiani G. The role of cytoskeletal and cytocontractile elements in pathologic processes. Am J Pathol. 1983 Mar;110(3):361–392. [PMC free article] [PubMed] [Google Scholar]
  24. Schlaepfer W. W., Freeman L. A. Neurofilament proteins of rat peripheral nerve and spinal cord. J Cell Biol. 1978 Sep;78(3):653–662. doi: 10.1083/jcb.78.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmid E., Tapscott S., Bennett G. S., Croop J., Fellini S. A., Holtzer H., Franke W. W. Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation. 1979;15(1):27–40. doi: 10.1111/j.1432-0436.1979.tb01031.x. [DOI] [PubMed] [Google Scholar]
  26. Sharp G. A., Shaw G., Weber K. Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones. Exp Cell Res. 1982 Feb;137(2):403–413. doi: 10.1016/0014-4827(82)90042-8. [DOI] [PubMed] [Google Scholar]
  27. Shaw G., Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature. 1982 Jul 15;298(5871):277–279. doi: 10.1038/298277a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tapscott S. J., Bennett G. S., Holtzer H. Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature. 1981 Aug 27;292(5826):836–838. doi: 10.1038/292836a0. [DOI] [PubMed] [Google Scholar]
  30. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  31. Thorpe R., Delacourte A., Ayers M., Bullock C., Anderton B. H. The polypeptides of isolated brain 10nm filaments and their association with polymerized tubulin. Biochem J. 1979 Aug 1;181(2):275–284. doi: 10.1042/bj1810275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trojanowski J. Q., Lee V. M. Anti-neurofilament monoclonal antibodies: reagents for the evaluation of human neoplasms. Acta Neuropathol. 1983;59(2):155–158. doi: 10.1007/BF00691603. [DOI] [PubMed] [Google Scholar]
  33. Trojanowski J. Q., Lee V. M., Schlaepfer W. W. An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol. 1984 Mar;15(3):248–257. doi: 10.1016/s0046-8177(84)80188-4. [DOI] [PubMed] [Google Scholar]
  34. Trojanowski J. Q., Lee V., Pillsbury N., Lee S. Neuronal origin of human esthesioneuroblastoma demonstrated with anti-neurofilament monoclonal antibodies. N Engl J Med. 1982 Jul 15;307(3):159–161. doi: 10.1056/NEJM198207153070305. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES