Abstract
Although collagen-containing implants are widely used in various surgical applications, there has been relatively little attention paid to the possibility that this type of biomaterial may undergo pathologic calcification which could compromise its function. The present study reports for the first time the calcification of a series of implants of purified collagen sponges prepared with graded degrees of aldehyde-induced cross-linkages (assessed by shrinkage-temperature, wetting time, and collagenase digestibility). Type I collagen sponges were pretreated with either glutaraldehyde (0.1% to 2.0% aqueous solution, for 5-180 minutes) or formaldehyde (as vapors for 15 minutes to 15 hours), and implanted subcutaneously for 21 days in weanling rats. Although specimens not pretreated with either aldehyde reagent and the formaldehyde sponges pretreated for 15 minutes were resorbed without evidence of calcification, all other aldehyde-pretreated implants mineralized. The degree of calcification did not correlate with extent of cross-linking. Formaldehyde-pretreated implants calcified more extensively (Ca2+ = 87.8 +/- 2.8 micrograms/mg, mean +/- standard error of the mean; n = 58) than did glutaraldehyde-pretreated implants (Ca2+ = 40.9 +/- 1.4 micrograms/mg; n = 52). It is concluded that both glutaraldehyde- and formaldehyde-pretreated Type I collagen sponges calcify after subdermal implantation in young rats. Although aldehyde pretreatment of Type I collagen sponge implants is a prerequisite for their eventual mineralization, the threshold level of aldehyde-induced cross-linking required to potentiate their maximal pathologic calcification is low.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arbustini E., Jones M., Moses R. D., Eidbo E. E., Carroll R. J., Ferrans V. J. Modification by the Hancock T6 process of calcification of bioprosthetic cardiac valves implanted in sheep. Am J Cardiol. 1984 May 1;53(9):1388–1396. doi: 10.1016/0002-9149(84)90099-7. [DOI] [PubMed] [Google Scholar]
- Bowes J. H., Cater C. W. The interaction of aldehydes with collagen. Biochim Biophys Acta. 1968 Oct 21;168(2):341–352. doi: 10.1016/0005-2795(68)90156-6. [DOI] [PubMed] [Google Scholar]
- Carpentier A., Lemaigre G., Robert L., Carpentier S., Dubost C. Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg. 1969 Oct;58(4):467–483. [PubMed] [Google Scholar]
- Cheung D. T., Nimni M. E. Mechanism of crosslinking of proteins by glutaraldehyde II. Reaction with monomeric and polymeric collagen. Connect Tissue Res. 1982;10(2):201–216. doi: 10.3109/03008208209034419. [DOI] [PubMed] [Google Scholar]
- Cheung D. T., Perelman N., Ko E. C., Nimni M. E. Mechanism of crosslinking of proteins by glutaraldehyde III. Reaction with collagen in tissues. Connect Tissue Res. 1985;13(2):109–115. doi: 10.3109/03008208509152389. [DOI] [PubMed] [Google Scholar]
- Chvapil M. Collagen sponge: theory and practice of medical applications. J Biomed Mater Res. 1977 Sep;11(5):721–741. doi: 10.1002/jbm.820110508. [DOI] [PubMed] [Google Scholar]
- Chvapil M., Speer D., Mora W., Eskelson C. Effect of tanning agent on tissue reaction to tissue implanted collagen sponge. J Surg Res. 1983 Nov;35(5):402–409. doi: 10.1016/0022-4804(83)90029-x. [DOI] [PubMed] [Google Scholar]
- DeVore D. T. Collagen xenografts for bone replacement: the effects of aldehyde-induced cross-linking on degradation rate. Oral Surg Oral Med Oral Pathol. 1977 May;43(5):677–686. doi: 10.1016/0030-4220(77)90050-0. [DOI] [PubMed] [Google Scholar]
- Eyre D. R. Collagen: molecular diversity in the body's protein scaffold. Science. 1980 Mar 21;207(4437):1315–1322. doi: 10.1126/science.7355290. [DOI] [PubMed] [Google Scholar]
- Fiddler G. I., Gerlis L. M., Walker D. R., Scott O., Williams G. J. Calcification of glutaraldehyde-preserved porcine and bovine xenograft valves in young children. Ann Thorac Surg. 1983 Mar;35(3):257–261. doi: 10.1016/s0003-4975(10)61554-8. [DOI] [PubMed] [Google Scholar]
- Jansen B., Ellinghorst G. Modification of polyetherurethane for biomedical application by radiation induced grafting. II. Water sorption, surface properties, and protein adsorption of grafted films. J Biomed Mater Res. 1984 Jul-Aug;18(6):655–669. doi: 10.1002/jbm.820180607. [DOI] [PubMed] [Google Scholar]
- Korn A. H., Feairheller S. H., Filachione E. M. Glutaraldehyde: nature of the reagent. J Mol Biol. 1972 Apr 14;65(3):525–529. doi: 10.1016/0022-2836(72)90206-9. [DOI] [PubMed] [Google Scholar]
- Levy R. J., Hawley M. A., Schoen F. J., Lund S. A., Liu P. Y. Inhibition by diphosphonate compounds of calcification of porcine bioprosthetic heart valve cusps implanted subcutaneously in rats. Circulation. 1985 Feb;71(2):349–356. doi: 10.1161/01.cir.71.2.349. [DOI] [PubMed] [Google Scholar]
- Levy R. J., Schoen F. J., Levy J. T., Nelson A. C., Howard S. L., Oshry L. J. Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol. 1983 Nov;113(2):143–155. [PMC free article] [PubMed] [Google Scholar]
- Levy R. J., Wolfrum J., Schoen F. J., Hawley M. A., Lund S. A., Langer R. Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. 1985 Apr 12;228(4696):190–192. doi: 10.1126/science.3919445. [DOI] [PubMed] [Google Scholar]
- Levy R. J., Zenker J. A., Bernhard W. F. Porcine bioprosthetic valve calcification in bovine left ventricle-aorta shunts: studies of the deposition of vitamin K-dependent proteins. Ann Thorac Surg. 1983 Aug;36(2):187–192. doi: 10.1016/s0003-4975(10)60454-7. [DOI] [PubMed] [Google Scholar]
- MADSEN E. T. An experimental and clinical evaluation of surgical suture materials. Surg Gynecol Obstet. 1953 Jul;97(1):73–80. [PubMed] [Google Scholar]
- Mannschott P., Herbage D., Weiss M., Buffevant C. Collagen heterogeneity in pig heart valves. Biochim Biophys Acta. 1976 May 20;434(1):177–183. doi: 10.1016/0005-2795(76)90048-9. [DOI] [PubMed] [Google Scholar]
- Milano A., Bortolotti U., Talenti E., Valfrè C., Arbustini E., Valente M., Mazzucco A., Gallucci V., Thiene G. Calcific degeneration as the main cause of porcine bioprosthetic valve failure. Am J Cardiol. 1984 Apr 1;53(8):1066–1070. doi: 10.1016/0002-9149(84)90638-6. [DOI] [PubMed] [Google Scholar]
- Monsan P., Puzo G., Mazarguil H. Etude du mécanisme d'établissement des liaisons glutaraldéhyde-protéines. Biochimie. 1975 Nov-Dec;57(11-12):1281–1292. [PubMed] [Google Scholar]
- Norton L., Chvapil M. Comparison of newer synthetic and biological wound dressings. J Trauma. 1981 Jun;21(6):463–468. [PubMed] [Google Scholar]
- PEACOCK E. E., Jr, SEIGLER H. F., BIGGERS P. W. USE OF TANNED COLLAGEN SPONGES IN THE TREATMENT OF LIVER INJURIES. Ann Surg. 1965 Feb;161:238–247. doi: 10.1097/00000658-196502000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postlethwaite A. E., Seyer J. M., Kang A. H. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978 Feb;75(2):871–875. doi: 10.1073/pnas.75.2.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoen F. J., Collins J. J., Jr, Cohn L. H. Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valves. Am J Cardiol. 1983 Mar 15;51(6):957–964. doi: 10.1016/s0002-9149(83)80173-8. [DOI] [PubMed] [Google Scholar]
- Schoen F. J., Levy R. J. Bioprosthetic heart valve failure: pathology and pathogenesis. Cardiol Clin. 1984 Nov;2(4):717–739. [PubMed] [Google Scholar]
- Schoen F. J., Levy R. J., Nelson A. C., Bernhard W. F., Nashef A., Hawley M. Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest. 1985 May;52(5):523–532. [PubMed] [Google Scholar]
- Schoen F. J., Levy R. J., Nelson A. C., Bernhard W. F., Nashef A., Hawley M. Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest. 1985 May;52(5):523–532. [PubMed] [Google Scholar]
- Skinner J. R., Kim H., Toon R. S., Kongtahworn C., Phillips S. J., Zeff R. H. Inflammatory epicardial reaction to processed bovine pericardium: case report. J Thorac Cardiovasc Surg. 1984 Nov;88(5 Pt 1):789–791. [PubMed] [Google Scholar]
- Speer D. P., Chvapil M., Volz R. G., Holmes M. D. Enhancement of healing in osteochondral defects by collagen sponge implants. Clin Orthop Relat Res. 1979 Oct;(144):326–335. [PubMed] [Google Scholar]
- Walker W. E., Duncan J. M., Frazier O. H., Jr, Livesay J. J., Ott D. A., Reul G. J., Cooley D. A. Early experience with the ionescu-shiley pericardial xenograft valve. Accelerated calcification in children. J Thorac Cardiovasc Surg. 1983 Oct;86(4):570–575. [PubMed] [Google Scholar]
- Warheit D. B., Hill L. H., Brody A. R. Surface morphology and correlated phagocytic capacity of pulmonary macrophages lavaged from the lungs of rats. Exp Lung Res. 1984;6(1):71–82. doi: 10.3109/01902148409087896. [DOI] [PubMed] [Google Scholar]
- Woodroof E. A. Use of glutaraldehyde and formaldehyde to process tissue heart valves. J Bioeng. 1978 Apr;2(1-2):1–9. [PubMed] [Google Scholar]