Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Jan;122(1):129–139.

Basement membrane as a spatial organizer of polarized epithelia. Exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro.

D E Ingber, J A Madri, J D Jamieson
PMCID: PMC1888129  PMID: 3942197

Abstract

The authors have previously described a transplantable pancreatic acinar carcinoma that comprises cells which reorganize and display normal epithelial orientation only when in contact with basement membrane (BM) in vivo. In the present study, they investigated whether exogenous acellular BM or collagenous stroma (prepared from human amnion) was sufficient to reorient pancreatic acinar tumor cells in vitro. Mechanically dispersed tumor cells could not spontaneously attach to standard culture substrata; yet they adhered to exogenous intact BM or to dishes coated with purified laminin or Type IV collagen. Cell contact with amniotic BM resulted in tumor cell shape changes, assembly of intracellular actin into fibrous bundles, and restoration of normal epithelial cell-cell interactions. Computerized morphometry confirmed that tumor cells exhibited a normal polarized distribution of lipid droplets, nuclei, Golgi complexes, and zymogen granules (from base to apex) within 6 hours of culture on BM. Adhering zonules and microvilli were observed only along apical tumor cell surfaces, although full junctional complexes and distinct membrane domains did not reform. Similar attachment, cytoskeletal alterations, and reorientation occurred in the absence of protein synthesis (25 micrograms/ml cycloheximide). In contrast, tumor cells that were maintained on amniotic stroma remained round, displayed circumferential rings of actin, and appeared randomly oriented. Thus, BM may normally serve to integrate and maintain individual cells within a polarized epithelium.

Full text

PDF
129

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee S. D., Cohn R. H., Bernfield M. R. Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. J Cell Biol. 1977 May;73(2):445–463. doi: 10.1083/jcb.73.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becich M. J., Bendayan M., Reddy J. K. Intracellular transport and storage of secretory proteins in relation to cytodifferentiation in neoplastic pancreatic acinar cells. J Cell Biol. 1983 Apr;96(4):949–960. doi: 10.1083/jcb.96.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Ze'ev A., Farmer S. R., Penman S. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell. 1980 Sep;21(2):365–372. doi: 10.1016/0092-8674(80)90473-0. [DOI] [PubMed] [Google Scholar]
  5. Brown S. S., Malinoff H. L., Wicha M. S. Connectin: cell surface protein that binds both laminin and actin. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5927–5930. doi: 10.1073/pnas.80.19.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brownell A. G., Bessem C. C., Slavkin H. C. Possible functions of mesenchyme cell-derived fibronectin during formation of basal lamina. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3711–3715. doi: 10.1073/pnas.78.6.3711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burgeson R. E., El Adli F. A., Kaitila I. I., Hollister D. W. Fetal membrane collagens: identification of two new collagen alpha chains. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2579–2583. doi: 10.1073/pnas.73.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cereijido M., Ehrenfeld J., Meza I., Martínez-Palomo A. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J Membr Biol. 1980;52(2):147–159. doi: 10.1007/BF01869120. [DOI] [PubMed] [Google Scholar]
  9. Chambard M., Gabrion J., Mauchamp J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol. 1981 Oct;91(1):157–166. doi: 10.1083/jcb.91.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. David G., Bernfield M. R. Collagen reduces glycosaminoglycan degradation by cultured mammary epithelial cells: possible mechanism for basal lamina formation. Proc Natl Acad Sci U S A. 1979 Feb;76(2):786–790. doi: 10.1073/pnas.76.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ekblom P., Alitalo K., Vaheri A., Timpl R., Saxén L. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):485–489. doi: 10.1073/pnas.77.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. doi: 10.1007/BF02616178. [DOI] [PubMed] [Google Scholar]
  13. Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
  14. Furie M. B., Cramer E. B., Naprstek B. L., Silverstein S. C. Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current. J Cell Biol. 1984 Mar;98(3):1033–1041. doi: 10.1083/jcb.98.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gospodarowicz D., Greenburg G., Birdwell C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 1978 Nov;38(11 Pt 2):4155–4171. [PubMed] [Google Scholar]
  16. Greenburg G., Vlodavsky I., Foidart J. M., Gospodarowicz D. Conditioned medium from endothelial cell cultures can restore the normal phenotypic expression of vascular endothelium maintained in vitro in the absence of fibroblast growth factor. J Cell Physiol. 1980 May;103(2):333–347. doi: 10.1002/jcp.1041030219. [DOI] [PubMed] [Google Scholar]
  17. Grover A., Andrews G., Adamson E. D. Role of laminin in epithelium formation by F9 aggregates. J Cell Biol. 1983 Jul;97(1):137–144. doi: 10.1083/jcb.97.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harris A. K., Wild P., Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980 Apr 11;208(4440):177–179. doi: 10.1126/science.6987736. [DOI] [PubMed] [Google Scholar]
  19. Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ingber D. E., Madri J. A., Jamieson J. D. Neoplastic disorganization of pancreatic epithelial cell-cell relations. Role of basement membrane. Am J Pathol. 1985 Nov;121(2):248–260. [PMC free article] [PubMed] [Google Scholar]
  21. Ingber D. E., Madri J. A., Jamieson J. D. Role of basal lamina in neoplastic disorganization of tissue architecture. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3901–3905. doi: 10.1073/pnas.78.6.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iwanij V., Jamieson J. D. Comparison of secretory protein profiles in developing rat pancreatic rudiments and rat acinar tumor cells. J Cell Biol. 1982 Dec;95(3):742–746. doi: 10.1083/jcb.95.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leivo I. Structure and composition of early basement membranes: studies with early embryos and teratocarcinoma cells. Med Biol. 1983 Feb;61(1):1–30. [PubMed] [Google Scholar]
  24. Liotta L. A., Lee C. W., Morakis D. J. New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett. 1980 Dec;11(2):141–152. doi: 10.1016/0304-3835(80)90105-6. [DOI] [PubMed] [Google Scholar]
  25. Louvard D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4132–4136. doi: 10.1073/pnas.77.7.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lwebuga-Mukasa J. S., Thulin G., Madri J. A., Barrett C., Warshaw J. B. An acellular human amnionic membrane model for in vitro culture of type II pneumocytes: the role of the basement membrane in cell morphology and function. J Cell Physiol. 1984 Oct;121(1):215–225. doi: 10.1002/jcp.1041210127. [DOI] [PubMed] [Google Scholar]
  27. Madri J. A., Dreyer B., Pitlick F. A., Furthmayr H. The collagenous components of the subendothelium. Correlation of structure and function. Lab Invest. 1980 Oct;43(4):303–315. [PubMed] [Google Scholar]
  28. Madri J. A., Roll F. J., Furthmayr H., Foidart J. M. Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J Cell Biol. 1980 Aug;86(2):682–687. doi: 10.1083/jcb.86.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Madri J. A., Williams S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol. 1983 Jul;97(1):153–165. doi: 10.1083/jcb.97.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meldolesi J., Castiglioni G., Parma R., Nassivera N., De Camilli P. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs. J Cell Biol. 1978 Oct;79(1):156–172. doi: 10.1083/jcb.79.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reddy J. K., Rao M. S. Transplantable pancreatic carcinoma of the rat. Science. 1977 Oct 7;198(4312):78–80. doi: 10.1126/science.897688. [DOI] [PubMed] [Google Scholar]
  32. Rizki T. M., Rizki R. M. Basement membrane polarizes lectin binding sites of Drosophila larval fat body cells. Nature. 1983 May 26;303(5915):340–342. doi: 10.1038/303340a0. [DOI] [PubMed] [Google Scholar]
  33. Rodriguez Boulan E., Sabatini D. D. Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5071–5075. doi: 10.1073/pnas.75.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodriguez-Boulan E., Paskiet K. T., Sabatini D. D. Assembly of enveloped viruses in Madin-Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J Cell Biol. 1983 Mar;96(3):866–874. doi: 10.1083/jcb.96.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roll F. J., Madri J. A., Albert J., Furthmayr H. Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney. an immunoferritin study of ultrathin frozen sections. J Cell Biol. 1980 Jun;85(3):597–616. doi: 10.1083/jcb.85.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spooner B. S., Cohen H. I., Faubion J. Development of the embryonic mammalian pancreas: the relationship between morphogenesis and cytodifferentiation. Dev Biol. 1977 Dec;61(2):119–130. doi: 10.1016/0012-1606(77)90285-8. [DOI] [PubMed] [Google Scholar]
  37. Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Terranova V. P., Rohrbach D. H., Martin G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 1980 Dec;22(3):719–726. doi: 10.1016/0092-8674(80)90548-6. [DOI] [PubMed] [Google Scholar]
  39. Timpl R., Johansson S., van Delden V., Oberbäumer I., Hök M. Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes. J Biol Chem. 1983 Jul 25;258(14):8922–8927. [PubMed] [Google Scholar]
  40. Timpl R., Martin G. R., Bruckner P., Wick G., Wiedemann H. Nature of the collagenous protein in a tumor basement membrane. Eur J Biochem. 1978 Mar;84(1):43–52. doi: 10.1111/j.1432-1033.1978.tb12139.x. [DOI] [PubMed] [Google Scholar]
  41. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  42. Trelstad R. L. The Golgi apparatus in chick corneal epithelium: changes in intracellular position during development. J Cell Biol. 1970 Apr;45(1):34–42. doi: 10.1083/jcb.45.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watanabe T. K., Hansen L. J., Reddy N. K., Kanwar Y. S., Reddy J. K. Differentiation of pancreatic acinar carcinoma cells cultured on rat testicular seminiferous tubular basement membranes. Cancer Res. 1984 Nov;44(11):5361–5368. [PubMed] [Google Scholar]
  44. Wicha M. S., Liotta L. A., Garbisa S., Kidwell W. R. Basement membrane collagen requirements for attachment and growth of mammary epithelium. Exp Cell Res. 1979 Nov;124(1):181–190. doi: 10.1016/0014-4827(79)90268-4. [DOI] [PubMed] [Google Scholar]
  45. Wicha M. S., Liotta L. A., Vonderhaar B. K., Kidwell W. R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980 Dec;80(2):253–256. doi: 10.1016/0012-1606(80)90402-9. [DOI] [PubMed] [Google Scholar]
  46. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES