Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 May;36(5):989–992. doi: 10.1128/aac.36.5.989

Epidemiology of plasmid-mediated beta-lactamases in enterobacteria Swedish neonatal wards and relation to antimicrobial therapy.

L G Burman 1, S Haeggman 1, M Kuistila 1, K Tullus 1, P Huovinen 1
PMCID: PMC188816  PMID: 1510425

Abstract

TEM-1, OXA-1, SHV-1, and related beta-lactamases in fecal isolates from 953 infants in 22 Swedish neonatal intensive care units were studied by DNA hybridization. TEM-1- and OXA-1-positive isolates were always Escherichia coli and represented 86 and 8%, respectively, of the ampicillin-resistant isolates of this species. SHV-1 was found in 16% of the Klebsiella sp. (mainly Klebsiella pneumoniae) isolates. TEM-1 and SHV-1 occurred in 14 and 16 units and in up to 64 and 26% of the neonates, respectively. On average, two to four different biochemical phenotypes per species per ward were positive for each beta-lactamase. All but 1 of the 33 E. coli phenotypes found to be TEM-1 positive were uniformly positive for the beta-lactamase gene, whereas some of the phenotypes found to be positive for OXA-1 (2 of 3) and SHV-1 (6 of 70) were occasionally negative for the respective genes. The occurrence of the three beta-lactamases studied tended to be associated with local ampicillin usage (correlation coefficient, 0.31 to 0.39; P greater than 0.05). Of the neonates receiving ampicillin, 30% carried TEM-1-positive E. coli, compared with 13% for cephalosporin-treated neonates and 15% for untreated neonates (P less than or equal to 0.001). The corresponding rates for SHV-1 in Klebsiella spp. were 18, 13, and 9% (P less than or equal to 0.01). Ampicillin is thus a significant risk factor for the maintenance of the most prevalent gram-negative plasmid-mediated beta-lactamases in hospitalized neonates.

Full text

PDF
989

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bush K. Excitement in the beta-lactamase arena. J Antimicrob Chemother. 1989 Dec;24(6):831–836. doi: 10.1093/jac/24.6.831. [DOI] [PubMed] [Google Scholar]
  2. Collatz E., Labia R., Gutmann L. Molecular evolution of ubiquitous beta-lactamases towards extended-spectrum enzymes active against newer beta-lactam antibiotics. Mol Microbiol. 1990 Oct;4(10):1615–1620. doi: 10.1111/j.1365-2958.1990.tb00537.x. [DOI] [PubMed] [Google Scholar]
  3. Cooksey R., Swenson J., Clark N., Gay E., Thornsberry C. Patterns and mechanisms of beta-lactam resistance among isolates of Escherichia coli from hospitals in the United States. Antimicrob Agents Chemother. 1990 May;34(5):739–745. doi: 10.1128/aac.34.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foster T. J. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 1983 Sep;47(3):361–409. doi: 10.1128/mr.47.3.361-409.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huovinen S., Huovinén P., Jacoby G. A. Detection of plasmid-mediated beta-lactamases with DNA probes. Antimicrob Agents Chemother. 1988 Feb;32(2):175–179. doi: 10.1128/aac.32.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martinez J. L., Baquero F. Epidemiology of antibiotic-inactivating enzymes and DNA probes: the problem of quantity. J Antimicrob Chemother. 1990 Sep;26(3):301–303. doi: 10.1093/jac/26.3.301-a. [DOI] [PubMed] [Google Scholar]
  7. Matthew M. Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. J Antimicrob Chemother. 1979 Jul;5(4):349–358. doi: 10.1093/jac/5.4.349. [DOI] [PubMed] [Google Scholar]
  8. Neu H. C. Overview of mechanisms of bacterial resistance. Diagn Microbiol Infect Dis. 1989 Jul-Aug;12(4 Suppl):109S–116S. doi: 10.1016/0732-8893(89)90122-3. [DOI] [PubMed] [Google Scholar]
  9. Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roy C., Segura C., Tirado M., Reig R., Hermida M., Teruel D., Foz A. Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur J Clin Microbiol. 1985 Apr;4(2):146–147. doi: 10.1007/BF02013586. [DOI] [PubMed] [Google Scholar]
  11. Sanders C. C., Iaconis J. P., Bodey G. P., Samonis G. Resistance to ticarcillin-potassium clavulanate among clinical isolates of the family Enterobacteriaceae: role of PSE-1 beta-lactamase and high levels of TEM-1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrob Agents Chemother. 1988 Sep;32(9):1365–1369. doi: 10.1128/aac.32.9.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tullus K., Berglund B., Fryklund B., Kühn I., Burman L. G. Epidemiology of fecal strains of the family Enterobacteriaceae in 22 neonatal wards and influence of antibiotic policy. J Clin Microbiol. 1988 Jun;26(6):1166–1170. doi: 10.1128/jcm.26.6.1166-1170.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tullus K., Berglund B., Fryklund B., Kühn I., Burman L. G. Influence of antibiotic therapy on faecal carriage of P-fimbriated Escherichia coli and other gram-negative bacteria in neonates. J Antimicrob Chemother. 1988 Oct;22(4):563–568. doi: 10.1093/jac/22.4.563. [DOI] [PubMed] [Google Scholar]
  14. Tullus K., Burman L. G. Ecological impact of ampicillin and cefuroxime in neonatal units. Lancet. 1989 Jun 24;1(8652):1405–1407. doi: 10.1016/s0140-6736(89)90122-0. [DOI] [PubMed] [Google Scholar]
  15. Tullus K., Fryklund B., Berglund B., Källenius G., Burman L. G. Influence of age on faecal carriage of P-fimbriated Escherichia coli and other gram-negative bacteria in hospitalized neonates. J Hosp Infect. 1988 May;11(4):349–356. doi: 10.1016/0195-6701(88)90088-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES