Abstract
(WB × C57BL/6)F1-W/Wv mice possess a genetic defect in multipotential hematopoietic stem cells; the mice are anemic and lack mast cells. The authors injected diluted India ink intravenously into W/WV mice and congenic normal +/+ mice and searched for genetically determined differences in the development of complications of the injection. In both W/WV and +/+ mice, intravenous ink resulted in thrombocytopenia and markedly prolonged bleeding times, as well as prolonged partial thromboplastin and prothrombin times and reduced fibrinogen concentrations. These effects were similar in W/WV and +/+ mice, although the reduction in platelet counts was greater in W/WV mice. In addition, the mortality associated with ink injection was significantly higher in W/WV mice than in congenic +/+ mice. Most W/WV mice which died first exhibited paralysis, and examination under the dissection microscope revealed that ink injection resulted in significantly more cerebral thromboemboli in W/WV mice than in +/+ controls. Bone marrow transplantation from +/+ mice corrected both the mast cell deficiency and the anemia of W/WV mice and protected the W/WV recipients from the adverse consequences of ink injection. By contrast, +/+ mice rendered as anemic as W/WV mice by breeding did not exhibit increased morbidity and mortality after ink injection. (WC × C57BL/6)F1-S1/S1d mice, which are anemic and lack mast cells because of a genetic defect different from that of W/WV mice, also exhibited increased morbidity and mortality after intravenous ink. Finally, mixture of ink with commercial heparin prior to intravenous injection markedly reduced the incidence of cerebral thromboembolism and death in W/WV mice. Taken together, these findings suggest that the increased morbidity and mortality exhibited by W/WV and S1/S1d mice that received injected ink might be related to their mast cell deficiency rather than to their anemia. But measurement of the histamine content of the blood and various tissues of WBB6F1-+/+ mice injected with ink, and examination of their tissues in 1-μ sections, indicated that intravenous ink did not cause substantial mast cell degranulation. As a result, the possibility that mast cells protect +/+ mice from the adverse effects of intravenous ink by a mechanism other than degranulation and release of heparin, or that the differences in the response of W/WV or S1/S1d mice and their +/+ littermates are due to defects other than their lack of mast cells, cannot be excluded.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abildgaard U. Highly purified antithrombin 3 with heparin cofactor activity prepared by disc electrophoresis. Scand J Clin Lab Invest. 1968;21(1):89–91. doi: 10.3109/00365516809076981. [DOI] [PubMed] [Google Scholar]
- BIOZZI G., BENACERRAF B., MENE G., HALPERN B. N. Etude quantitative de l'activité granulopexique du système réticuloendothélial par l'injection intraveineuse d'encre de Chine chez les diverses espèces animales. II. Relations entre les modifications de la coagulation du sang in vitro sous l'effet de l'injection intraveineuse de doses croissantes d'encre de Chine et sa répartition dans l'organisme. Ann Inst Pasteur (Paris) 1951 Aug;81(2):164–172. [PubMed] [Google Scholar]
- BRECHER G., CRONKITE E. P. Morphology and enumeration of human blood platelets. J Appl Physiol. 1950 Dec;3(6):365–377. doi: 10.1152/jappl.1950.3.6.365. [DOI] [PubMed] [Google Scholar]
- Chervenick P. A., Boggs D. R. Decreased neutrophils and megakaryocytes in anemic mice of genotype W/W. J Cell Physiol. 1969 Feb;73(1):25–30. doi: 10.1002/jcp.1040730104. [DOI] [PubMed] [Google Scholar]
- Dvorak H. F., Dvorak A. M., Simpson B. A., Richerson H. B., Leskowitz S., Karnovsky M. J. Cutaneous basophil hypersensitivity. II. A light and electron microscopic description. J Exp Med. 1970 Sep 1;132(3):558–582. doi: 10.1084/jem.132.3.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebbe S., Phalen E., D'Amore P., Howard D. Megakaryocytic responses to thrombocytopenia and thrombocytosis in Sl/Sld mice. Exp Hematol. 1978 Feb;6(2):201–212. [PubMed] [Google Scholar]
- Ebbe S., Phalen E. Regulation of megakaryocytes in W/Wv mice. J Cell Physiol. 1978 Jul;96(1):73–79. doi: 10.1002/jcp.1040960109. [DOI] [PubMed] [Google Scholar]
- Galli S. J., Dvorak A. M., Dvorak H. F. Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function. Prog Allergy. 1984;34:1–141. [PubMed] [Google Scholar]
- Grzanna R., Shultz L. D. The contribution of mast cells to the histamine content of the central nervous system: a regional analysis. Life Sci. 1982 Jun 7;30(23):1959–1964. doi: 10.1016/0024-3205(82)90434-9. [DOI] [PubMed] [Google Scholar]
- HALPERN B. N., BENACERRAF B., BIOZZI G. Quantitative study of the granulopectic activity of the reticulo-endothelial system. I. The effect of the ingredients present in India ink and of substances affecting blood clotting in vivo on the fate of carbon particles administered intravenously in rats, mice and rabbits. Br J Exp Pathol. 1953 Aug;34(4):426–440. [PMC free article] [PubMed] [Google Scholar]
- HALPERN B. N., BIOZZI G., MENE G., BENACERRAF B. Etude quantitative de l'activité granulopexique du système réticulo-endothélial par l'injection intraveineuse d'encre de Chine chez les diverses espèces animales. I. Méthode d'étude quantitative de l'activité granulopexique du system réticuloendothélial par l'injection intraveineuse de particules de carbone de dimensions connues. Ann Inst Pasteur (Paris) 1951 Jun;80(6):582–604. [PubMed] [Google Scholar]
- HOPPS H. C., DENT T. E. India ink and reticuloendothelial blockade. Arch Pathol. 1962 Oct;74:285–291. [PubMed] [Google Scholar]
- Holland J. M. Serotonin deficiency and prolonged bleeding in beige mice. Proc Soc Exp Biol Med. 1976 Jan;151(1):32–39. doi: 10.3181/00379727-151-39137. [DOI] [PubMed] [Google Scholar]
- Hough L. B., Khandelwal J. K., Goldschmidt R. C., Diomande M., Glick S. D. Normal levels of histamine and tele-methylhistamine in mast cell-deficient mouse brain. Brain Res. 1984 Jan 30;292(1):133–138. doi: 10.1016/0006-8993(84)90897-7. [DOI] [PubMed] [Google Scholar]
- Jaques L. B., Mahadoo J., Riley J. F. The mast cell/heparin paradox. Lancet. 1977 Feb 19;1(8008):411–413. doi: 10.1016/s0140-6736(77)92615-0. [DOI] [PubMed] [Google Scholar]
- Jaques L. B., Waters E. T. The identity and origin of the anticoagulant of anaphylactic shock in the dog. J Physiol. 1941 Jun 30;99(4):454–466. doi: 10.1113/jphysiol.1941.sp003915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitamura Y., Go S. Decreased production of mast cells in S1/S1d anemic mice. Blood. 1979 Mar;53(3):492–497. [PubMed] [Google Scholar]
- Kitamura Y., Go S., Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood. 1978 Aug;52(2):447–452. [PubMed] [Google Scholar]
- Kitamura Y., Kawata T., Suda O., Ezumi K. Changed differentiation pattern of parental colony-- forming cells in F1 hybrid mice suffering from graft-versus-host disease. Transplantation. 1970 Dec;10(6):455–462. doi: 10.1097/00007890-197012000-00001. [DOI] [PubMed] [Google Scholar]
- Kitamura Y., Shimada M., Go S., Matsuda H., Hatanaka K., Seki M. Distribution of mast-cell precursors in hematopoeitic and lymphopoietic tissues of mice. J Exp Med. 1979 Sep 19;150(3):482–490. doi: 10.1084/jem.150.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcum J. A., Fritze L., Galli S. J., Karp G., Rosenberg R. D. Microvascular heparin-like species with anticoagulant activity. Am J Physiol. 1983 Nov;245(5 Pt 1):H725–H733. doi: 10.1152/ajpheart.1983.245.5.H725. [DOI] [PubMed] [Google Scholar]
- Marcum J. A., McKenney J. B., Rosenberg R. D. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest. 1984 Aug;74(2):341–350. doi: 10.1172/JCI111429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcum J. A., Rosenberg R. D. Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells. Biochem Biophys Res Commun. 1985 Jan 16;126(1):365–372. doi: 10.1016/0006-291x(85)90615-1. [DOI] [PubMed] [Google Scholar]
- Metcalfe D. D., Kaliner M., Donlon M. A. The mast cell. Crit Rev Immunol. 1981 Sep;3(1):23–74. [PubMed] [Google Scholar]
- Orr E. L., Pace K. R. The significance of mast cells as a source of histamine in the mouse brain. J Neurochem. 1984 Mar;42(3):727–732. doi: 10.1111/j.1471-4159.1984.tb02743.x. [DOI] [PubMed] [Google Scholar]
- Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
- Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459. [PubMed] [Google Scholar]
- Schwartz L. B., Austen K. F. Structure and function of the chemical mediators of mast cells. Prog Allergy. 1984;34:271–321. [PubMed] [Google Scholar]
- Straus A. H., Nader H. B., Dietrich C. P. Absence of heparin or heparin-like compounds in mast-cell-free tissues and animals. Biochim Biophys Acta. 1982 Aug 27;717(3):478–485. doi: 10.1016/0304-4165(82)90291-4. [DOI] [PubMed] [Google Scholar]
- Threatte G. A., Ebbe S., Phalen E. Measurement of thrombocytopoiesis in W/Wv mice with evidence for an abnormality of sulfate metabolism. Proc Soc Exp Biol Med. 1981 Sep;167(4):576–580. doi: 10.3181/00379727-167-41218. [DOI] [PubMed] [Google Scholar]
- Yamatodani A., Maeyama K., Watanabe T., Wada H., Kitamura Y. Tissue distribution of histamine in a mutant mouse deficient in mast cells: clear evidence for the presence of non-mast-cell histamine. Biochem Pharmacol. 1982 Feb 1;31(3):305–309. doi: 10.1016/0006-2952(82)90175-7. [DOI] [PubMed] [Google Scholar]
- Yano S., Harada M. A method for the production of stress erosion in the mouse stomach and related pharmacological studies. Jpn J Pharmacol. 1973 Feb;23(1):57–64. doi: 10.1254/jjp.23.57. [DOI] [PubMed] [Google Scholar]
- Yin E. T., Wessler S., Stoll P. J. Identity of plasma-activated factor X inhibitor with antithrombin 3 and heparin cofactor. J Biol Chem. 1971 Jun 10;246(11):3712–3719. [PubMed] [Google Scholar]
- Yoshikawa T., Furukawa Y., Murakami M., Takemura S., Kondo M. Experimental model of disseminated intravascular coagulation induced by sustained infusion of endotoxin. Res Exp Med (Berl) 1981;179(3):223–228. doi: 10.1007/BF01851619. [DOI] [PubMed] [Google Scholar]
- Yoshikawa T., Murakami M., Furukawa Y., Kato H., Takemura S., Kondo M. Lipid peroxidation and experimental disseminated intravascular coagulation in rats induced by endotoxin. Thromb Haemost. 1983 Jun 28;49(3):214–216. [PubMed] [Google Scholar]
- Yurt R. W., Leid R. W., Jr, Spragg J., Austen K. F. Immunologic release of heparin from purified rat peritoneal mast cells. J Immunol. 1977 Apr;118(4):1201–1207. [PubMed] [Google Scholar]