Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Nov;125(2):332–338.

The in situ cellular immune response in acute herpes simplex encephalitis.

R A Sobel, A B Collins, R B Colvin, A K Bhan
PMCID: PMC1888245  PMID: 3789090

Abstract

To characterize the in situ cellular immune response in acute herpes simplex encephalitis (HSE), the authors stained frozen brain specimens from 19 patients with HSE and 8 controls with a panel of monoclonal antibodies, which allowed them to identify inflammatory cell subsets and expression of activation markers and major histocompatibility complex (MHC) molecules. Parenchymal and meningeal inflammatory infiltrates were composed of T cells, with fewer natural killer and B cells, and variable numbers of granulocytes and macrophages. T4+ and T8+ cells were present in equal numbers. Inflammatory cells expressed interleukin-2 receptor, MHC Class I (HLA-alpha chain, beta-2 microglobulin), and MHC Class II (HLA-DR, HLA-DQ) molecules. There was increased MHC molecule expression in HSE on resident cells, including neurons and vascular endothelium, and vascular expression of HLA-DR was greater than that of HLA-DQ (P less than 0.01). No correlations between immune parameters with amount of corticosteroid therapy or duration of illness before biopsy was performed or outcome were found. T cell-mediated cytotoxic and delayed hypersensitivity mechanisms may contribute to tissue injury in HSE.

Full text

PDF
332

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Miller C. A., Gartland G. L., Balch C. M. Differentiation stages of human natural killer cells in lymphoid tissues from fetal to adult life. J Exp Med. 1983 Jan 1;157(1):273–284. doi: 10.1084/jem.157.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell. 1978 May;14(1):9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
  3. Bhan A. K., Mihm M. C., Jr, Dvorak H. F. T cell subsets in allograft rejection. In situ characterization of T cell subsets in human skin allografts by the use of monoclonal antibodies. J Immunol. 1982 Oct;129(4):1578–1583. [PubMed] [Google Scholar]
  4. Bhan A. K., Nadler L. M., Stashenko P., McCluskey R. T., Schlossman S. F. Stages of B cell differentiation in human lymphoid tissue. J Exp Med. 1981 Sep 1;154(3):737–749. doi: 10.1084/jem.154.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breard J., Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol. 1980 Apr;124(4):1943–1948. [PubMed] [Google Scholar]
  6. Capobianchi M. R., Ameglio F., Tosi R., Dolei A. Differences in the expression and release of DR, BR, and DQ molecules in human cells treated with recombinant interferon gamma: comparison to other interferons. Hum Immunol. 1985 May;13(1):1–11. doi: 10.1016/0198-8859(85)90022-9. [DOI] [PubMed] [Google Scholar]
  7. Esiri M. M. Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci. 1982 May;54(2):209–226. doi: 10.1016/0022-510x(82)90183-6. [DOI] [PubMed] [Google Scholar]
  8. Esiri M. M. Immunohistological studies of immunoglobulin-containing cells and viral antigens in some inflammatory diseases of the nervous system. Prog Brain Res. 1983;59:209–219. [PubMed] [Google Scholar]
  9. Fitzgerald P. A., Mendelsohn M., Lopez C. Human natural killer cells limit replication of herpes simplex virus type 1 in vitro. J Immunol. 1985 Apr;134(4):2666–2672. [PubMed] [Google Scholar]
  10. Fujinami R. S., Oldstone M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985 Nov 29;230(4729):1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  11. Hammer S. M., Gillis J. M. Herpes simplex virus replication in interleukin-2-stimulated human T cells. J Infect Dis. 1985 Mar;151(3):544–548. doi: 10.1093/infdis/151.3.544. [DOI] [PubMed] [Google Scholar]
  12. Hosein B., Bianco C. Monocyte receptors for fibronectin characterized by a monoclonal antibody that interferes with receptor activity. J Exp Med. 1985 Jul 1;162(1):157–170. doi: 10.1084/jem.162.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Howes E. L., Taylor W., Mitchison N. A., Simpson E. MHC matching shows that at least two T-cell subsets determine resistance to HSV. Nature. 1979 Jan 4;277(5691):66–68. doi: 10.1038/277067a0. [DOI] [PubMed] [Google Scholar]
  14. Hyafil F., Strominger J. L. Dissociation and exchange of the beta 2-microglobulin subunit of HLA-A and HLA-B antigens. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5834–5838. doi: 10.1073/pnas.76.11.5834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koenig H., Rabinowitz S. G., Day E., Miller V. Post-infectious encephalomyelitis after successful treatment of herpes simplex encephalitis with adenine arabinoside: ultrastructural observations. N Engl J Med. 1979 May 10;300(19):1089–1093. doi: 10.1056/NEJM197905103001906. [DOI] [PubMed] [Google Scholar]
  16. Larsen H. S., Russell R. G., Rouse B. T. Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic T lymphocytes. Infect Immun. 1983 Jul;41(1):197–204. doi: 10.1128/iai.41.1.197-204.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ledbetter J. A., Evans R. L., Lipinski M., Cunningham-Rundles C., Good R. A., Herzenberg L. A. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J Exp Med. 1981 Feb 1;153(2):310–323. doi: 10.1084/jem.153.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nadler L. M., Stashenko P., Hardy R., Pesando J. M., Yunis E. J., Schlossman S. F. Monoclonal antibodies defining serologically distinct HLA-D/DR related Ia-like antigens in man. Hum Immunol. 1981 Feb;2(1):77–90. doi: 10.1016/0198-8859(81)90009-4. [DOI] [PubMed] [Google Scholar]
  19. Ottenhoff T. H., Elferink D. G., Hermans J., de Vries R. R. HLA class II restriction repertoire of antigen-specific T cells. I. The main restriction determinants for antigen presentation are associated with HLA-D/DR and not with DP and DQ. Hum Immunol. 1985 Jun;13(2):105–116. doi: 10.1016/0198-8859(85)90017-5. [DOI] [PubMed] [Google Scholar]
  20. Pelton B. K., Duncan I. B., Denman A. M. Herpes simplex virus depresses antibody production by affecting T-cell function. Nature. 1980 Mar 13;284(5752):176–177. doi: 10.1038/284176a0. [DOI] [PubMed] [Google Scholar]
  21. Phillips J. H., Lanier L. L. Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen. J Immunol. 1986 Mar 1;136(5):1579–1585. [PubMed] [Google Scholar]
  22. Reinherz E. L., Morimoto C., Fitzgerald K. A., Hussey R. E., Daley J. F., Schlossman S. F. Heterogeneity of human T4+ inducer T cells defined by a monoclonal antibody that delineates two functional subpopulations. J Immunol. 1982 Jan;128(1):463–468. [PubMed] [Google Scholar]
  23. Reinherz E. L., Schlossman S. F. The differentiation and function of human T lymphocytes. Cell. 1980 Apr;19(4):821–827. doi: 10.1016/0092-8674(80)90072-0. [DOI] [PubMed] [Google Scholar]
  24. Schrier R. D., Ishioka G. Y., Pizer L. I., Moorhead J. W. Delayed hypersensitivity and immune protection against herpes simplex virus: suppressor T cells that regulate the induction of delayed hypersensitivity effector T cells also regulate the induction of protective T cells. J Immunol. 1985 May;134(5):2889–2893. [PubMed] [Google Scholar]
  25. Schuller-Petrovic S., Gebhart W., Lassmann H., Rumpold H., Kraft D. A shared antigenic determinant between natural killer cells and nervous tissue. Nature. 1983 Nov 10;306(5939):179–181. doi: 10.1038/306179a0. [DOI] [PubMed] [Google Scholar]
  26. Sobel R. A., Blanchette B. W., Bhan A. K., Colvin R. B. The immunopathology of experimental allergic encephalomyelitis. I. Quantitative analysis of inflammatory cells in situ. J Immunol. 1984 May;132(5):2393–2401. [PubMed] [Google Scholar]
  27. Sobel R. A., Blanchette B. W., Bhan A. K., Colvin R. B. The immunopathology of experimental allergic encephalomyelitis. II. Endothelial cell Ia increases prior to inflammatory cell infiltration. J Immunol. 1984 May;132(5):2402–2407. [PubMed] [Google Scholar]
  28. Stashenko P., Nadler L. M., Hardy R., Schlossman S. F. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980 Oct;125(4):1678–1685. [PubMed] [Google Scholar]
  29. Stewart G. J., Kelsall B. L., Charron D. J., Grumet F. C., Merigan T. C. The role of HLA-DR determinants in monocyte-macrophage presentation of herpes simplex virus antigen to human T cells. Cell Immunol. 1981 Jun;61(1):11–21. doi: 10.1016/0008-8749(81)90349-x. [DOI] [PubMed] [Google Scholar]
  30. Townsend J. J., Baringer J. R. Morphology of central nervous system disease in immunosuppressed mice after peripheral herpes simplex virus inoculation. Trigeminal root entry zone. Lab Invest. 1979 Feb;40(2):178–182. [PubMed] [Google Scholar]
  31. Townsend J. J. Macrophage response to herpes simplex encephalitis in immune competent and T cell-deficient mice. J Neuroimmunol. 1985 Jan;7(4):195–206. doi: 10.1016/s0165-5728(84)80019-3. [DOI] [PubMed] [Google Scholar]
  32. Traugott U., Scheinberg L. C., Raine C. S. On the presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuroimmunol. 1985 Apr;8(1):1–14. doi: 10.1016/s0165-5728(85)80043-6. [DOI] [PubMed] [Google Scholar]
  33. Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol. 1981 Apr;126(4):1393–1397. [PubMed] [Google Scholar]
  34. Upton A. R., Barwick D. D., Foster J. B. Dexamethasone treatment in herpes-simplex encephalitis. Lancet. 1971 Feb 6;1(7693):290–291. doi: 10.1016/s0140-6736(71)91019-1. [DOI] [PubMed] [Google Scholar]
  35. Wang C. Y., Al-Katib A., Lane C. L., Koziner B., Fu S. M. Induction of HLA-DC/DS (LEU 10) antigen expression by human precursor B cell lines. J Exp Med. 1983 Nov 1;158(5):1757–1762. doi: 10.1084/jem.158.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Whitley R. J., Soong S. J., Hirsch M. S., Karchmer A. W., Dolin R., Galasso G., Dunnick J. K., Alford C. A. Herpes simplex encephalitis: vidarabine therapy and diagnostic problems. N Engl J Med. 1981 Feb 5;304(6):313–318. doi: 10.1056/NEJM198102053040602. [DOI] [PubMed] [Google Scholar]
  37. Wong G. H., Bartlett P. F., Clark-Lewis I., McKimm-Breschkin J. L., Schrader J. W. Interferon-gamma induces the expression of H-2 and Ia antigens on brain cells. J Neuroimmunol. 1985 Feb-Mar;7(5-6):255–278. doi: 10.1016/s0165-5728(84)80026-0. [DOI] [PubMed] [Google Scholar]
  38. Zawatzky R., Gresser I., DeMaeyer E., Kirchner H. The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. J Infect Dis. 1982 Sep;146(3):405–410. doi: 10.1093/infdis/146.3.405. [DOI] [PubMed] [Google Scholar]
  39. ten Berge R. J., Sauerwein H. P., Yong S. L., Schellekens P. T. Administration of prednisolone in vivo affects the ratio of OKT4/OKT8 and the LDH-isoenzyme pattern of human T lymphocytes. Clin Immunol Immunopathol. 1984 Jan;30(1):91–103. doi: 10.1016/0090-1229(84)90010-2. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES