Abstract
The cytogenesis of giant cell tumor of bone (GCT) was assessed by immunohistochemical methods. Three GCT were analyzed by a sensitive immunoalkaline phosphatase technique with a panel of monoclonal antibodies, including eight reacting with separate antigens previously found to be present on mononuclear phagocytes (MPs) and one specific for the endothelial marker, coagulation Factor 8. Among the MP-associated antigens evaluated were leukocyte common antigen (LCA), HLA-DR, C3b receptor, and C3bi receptor. Also incorporated in the panel were antibodies to MP-associated antigens with well-characterized tissue distribution but of currently unknown function. Constituent cells of the tumors varied in their reactions with the antibodies of the panel. Although mononuclear cells in tumor stroma were labeled with all of the antibodies against the MP markers, giant cells reacted strongly only with antibodies to LCA and the MP-associated antigen recognized by the antibody EBM11. Giant cells were weakly and focally labeled with antibodies (KB90 and UCHM1) against two additional MP-associated determinants and were unreactive with the remaining antibodies in the panel. Spindled stromal cells, which appeared to produce collagen, were not labeled with any of the antibodies in the panel. Only endothelial cells reacted with antibody to Factor 8. The results of this study suggest that giant cells of GCT are derived from stromal cells of mononuclear phagocyte lineage, and that the stromal precurser cells lose some, but not all, MP-associated antigens as they mature into giant cells.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
- Athanasou N. A., Bliss E., Gatter K. C., Heryet A., Woods C. G., McGee J. O. An immunohistological study of giant-cell tumour of bone: evidence for an osteoclast origin of the giant cells. J Pathol. 1985 Nov;147(3):153–158. doi: 10.1002/path.1711470302. [DOI] [PubMed] [Google Scholar]
- Brooks D. A., Zola H., McNamara P. J., Bradley J., Bradstock K. F., Hancock W. W., Atkins R. C. Membrane antigens of human cells of the monocyte/macrophage lineage studied with monoclonal antibodies. Pathology. 1983 Jan;15(1):45–52. doi: 10.3109/00313028309061401. [DOI] [PubMed] [Google Scholar]
- Burmester G. R., Winchester R. J., Dimitriu-Bona A., Klein M., Steiner G., Sissons H. A. Delineation of four cell types comprising the giant cell tumor of bone. Expression of Ia and monocyte-macrophage lineage antigens. J Clin Invest. 1983 Jun;71(6):1633–1648. doi: 10.1172/JCI110919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coccia P. F. Cells that resorb bone. N Engl J Med. 1984 Feb 16;310(7):456–458. doi: 10.1056/NEJM198402163100709. [DOI] [PubMed] [Google Scholar]
- Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
- Cordell J. L., Falini B., Erber W. N., Ghosh A. K., Abdulaziz Z., MacDonald S., Pulford K. A., Stein H., Mason D. Y. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem. 1984 Feb;32(2):219–229. doi: 10.1177/32.2.6198355. [DOI] [PubMed] [Google Scholar]
- Dahlin D. C. Giant-cell tumor of vertebrae above the sacrum: a review of 31 cases. Cancer. 1977 Mar;39(3):1350–1356. doi: 10.1002/1097-0142(197703)39:3<1350::aid-cncr2820390351>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Falini B., Pulford K., Erber W. N., Posnett D. N., Pallesen G., Schwarting R., Annino L., Cafolla A., Canino S., Mori A. Use of a panel of monoclonal antibodies for the diagnosis of hairy cell leukaemia. An immunocytochemical study of 36 cases. Histopathology. 1986 Jul;10(7):671–687. doi: 10.1111/j.1365-2559.1986.tb02521.x. [DOI] [PubMed] [Google Scholar]
- Franklin W. A., Mason D. Y., Pulford K., Falini B., Bliss E., Gatter K. C., Stein H., Clarke L. C., McGee J. O. Immunohistological analysis of human mononuclear phagocytes and dendritic cells by using monoclonal antibodies. Lab Invest. 1986 Mar;54(3):322–335. [PubMed] [Google Scholar]
- Gerdes J., Naiem M., Mason D. Y., Stein H. Human complement (C3b) receptors defined by a mouse monoclonal antibody. Immunology. 1982 Apr;45(4):645–653. [PMC free article] [PubMed] [Google Scholar]
- Hanaoka H., Friedman B., Mack R. P. Ultrastructure and histogenesis of giant-cell tumor of bone. Cancer. 1970 Jun;25(6):1408–1423. doi: 10.1002/1097-0142(197006)25:6<1408::aid-cncr2820250622>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- Hancock W. W., Zola H., Atkins R. C. Antigenic heterogeneity of human mononuclear phagocytes: immunohistologic analysis using monoclonal antibodies. Blood. 1983 Dec;62(6):1271–1279. [PubMed] [Google Scholar]
- Hogg N., MacDonald S., Slusarenko M., Beverley P. C. Monoclonal antibodies specific for human monocytes, granulocytes and endothelium. Immunology. 1984 Dec;53(4):753–767. [PMC free article] [PubMed] [Google Scholar]
- Horton M. A., Rimmer E. F., Lewis D., Pringle J. A., Fuller K., Chambers T. J. Cell surface characterization of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types. J Pathol. 1984 Dec;144(4):281–294. doi: 10.1002/path.1711440410. [DOI] [PubMed] [Google Scholar]
- Ibbotson K. J., Roodman G. D., McManus L. M., Mundy G. R. Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol. 1984 Aug;99(2):471–480. doi: 10.1083/jcb.99.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mundy G. R. Monocyte-macrophage system and bone resorption. Lab Invest. 1983 Aug;49(2):119–121. [PubMed] [Google Scholar]
- Naiem M., Gerdes J., Abdulaziz Z., Sunderland C. A., Allington M. J., Stein H., Mason D. Y. The value of immunohistological screening in the production of monoclonal antibodies. J Immunol Methods. 1982;50(2):145–160. doi: 10.1016/0022-1759(82)90221-6. [DOI] [PubMed] [Google Scholar]
- Nauriyal D. C., Gupta P. P., Baxi K. K. Pathological changes due to rumen lactic acidosis in buffaloes and cattle. Zentralbl Veterinarmed A. 1978 Jun;25(5):383–392. doi: 10.1111/j.1439-0442.1978.tb00936.x. [DOI] [PubMed] [Google Scholar]
- Ores R., Ortiz J., Rosen P. Localization of acid phosphatase activity in a giant cell tumor of bone. Arch Pathol. 1969 Jul;88(1):54–57. [PubMed] [Google Scholar]
- PEPLER W. J. Histogenesis of osteoclastomata. Nature. 1958 Mar 1;181(4609):633–633. doi: 10.1038/181633a0. [DOI] [PubMed] [Google Scholar]
- RATHER L. J. A note on the origin of multinucleated giant cells from vascular channels in tumors; tumors arising in thyroid gland, bone, and soft tissue. AMA Arch Pathol. 1951 Jul;52(1):98–103. [PubMed] [Google Scholar]
- Sanerkin N. G., Mott M. G., Roylance J. An unusual intraosseous lesion with fibroblastic, osteoclastic, osteoblastic, aneurysmal and fibromyxoid elements. "Solid" variant of aneurysmal bone cyst. Cancer. 1983 Jun 15;51(12):2278–2286. doi: 10.1002/1097-0142(19830615)51:12<2278::aid-cncr2820511219>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
- Severson A. R. Differentiation of mononuclear cells into multinucleated osteoclast-like cells. Exp Cell Biol. 1983;51(5):267–274. doi: 10.1159/000163202. [DOI] [PubMed] [Google Scholar]
- Sieff C. A., Chessells J. M., Levinsky R. J., Pritchard J., Rogers D. W., Casey A., Muller K., Hall C. M. Allogeneic bone-marrow transplantation in infantile malignant osteopetrosis. Lancet. 1983 Feb 26;1(8322):437–441. doi: 10.1016/s0140-6736(83)91438-1. [DOI] [PubMed] [Google Scholar]
- Sorell M., Kapoor N., Kirkpatrick D., Rosen J. F., Chaganti R. S., Lopez C., Dupont B., Pollack M. S., Terrin B. N., Harris M. B. Marrow transplantation for juvenile osteopetrosis. Am J Med. 1981 Jun;70(6):1280–1287. doi: 10.1016/0002-9343(81)90839-1. [DOI] [PubMed] [Google Scholar]
- Steiner G. C., Ghosh L., Dorfman H. D. Ultrastructure of giant cell tumors of bone. Hum Pathol. 1972 Dec;3(4):569–586. doi: 10.1016/s0046-8177(72)80007-8. [DOI] [PubMed] [Google Scholar]
- Tinkler S. M., Linder J. E., Williams D. M., Johnson N. W. Formation of osteoclasts from blood monocytes during 1 alpha-OH Vit D-stimulated bone resorption in mice. J Anat. 1981 Oct;133(Pt 3):389–396. [PMC free article] [PubMed] [Google Scholar]
- Warnke R. A., Gatter K. C., Falini B., Hildreth P., Woolston R. E., Pulford K., Cordell J. L., Cohen B., De Wolf-Peeters C., Mason D. Y. Diagnosis of human lymphoma with monoclonal antileukocyte antibodies. N Engl J Med. 1983 Nov 24;309(21):1275–1281. doi: 10.1056/NEJM198311243092102. [DOI] [PubMed] [Google Scholar]
- Ziegler A., Uchańska-Ziegler B., Zeuthen J., Wernet P. HLA antigen expression at the single cell level on a K562 X B cell hybrid: an analysis with monoclonal antibodies using bacterial binding assays. Somatic Cell Genet. 1982 Nov;8(6):775–789. doi: 10.1007/BF01543018. [DOI] [PubMed] [Google Scholar]