Abstract
Alterations in triacylglycerol and phospholipid metabolism are known to occur during the evolution of myocardial ischemic injury. The purpose of this study was to explore potential relationships between the accumulation of arachidonic acid and other fatty acids, the accumulation of triacylglycerol, and the progression of myocardial injury. Measurements of the fatty acid levels in triacylglycerol, unesterified fatty acids, and calcium content were correlated with myocardial function during ischemia and ischemia with reflow in an isolated perfused rat heart preparation. After 10 minutes of ischemia in this model, myocardial dysfunction was reversible, with recovery of left ventricular +dP/dt to 82.0% +/- 4.8% of control values upon reperfusion. Hearts did not recover with reperfusion after 30 minutes of ischemia and displayed a significant increase in tissue calcium content. A significant, nearly threefold increase in the arachidonic acid content of triacylglycerol was found after 10 minutes of ischemia and continued to increase with longer periods of ischemia and reflow. Other fatty acids also showed increased levels in triacylglycerol. The time course of accumulation of unesterified arachidonic acid paralleled the loss of myocardial function. Levels of free arachidonic acid were (in nanomoles per gram wet weight) 11.1 +/- 2.1 (SEM) for control hearts, 17.3 +/- 1.9 after 10 minutes of ischemia, and 38.4 +/- 2.5 after 30 minutes of ischemia. Increases in other free fatty acids contributed to a significant increase in total free fatty acid accumulation after 30 minutes of ischemia. Thus, the content of arachidonic and other fatty acids in triacylglycerol was found to increase early during ischemia, and a major increase in free arachidonic and other unesterified fatty acids occurred after a longer period of ischemia. These findings are consistent with an initial reincorporation of free fatty acids into triacylglycerol after release from membrane phospholipids, suggesting that membrane fatty acids may be a major source of triacylglycerol that accumulates in ischemic myocardium. In addition, these results suggest that a major increase in free fatty acids during ischemia and ischemia with reflow correlates temporally with the development of severe contractile dysfunction and accumulation of calcium in the heart.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Buja L. M., Parkey R. W., Bonte F. J., Willerson J. T. Fatty acid accumulation and abnormal lipid deposition in peripheral and border zones of experimental myocardial infarcts. J Nucl Med. 1978 Mar;19(3):276–283. [PubMed] [Google Scholar]
- Burton K. P., Templeton G. H., Hagler H. K., Willerson J. T., Buja L. M. Effect of glucose availability on functional membrane integrity, ultrastructure and contractile performance following hypoxia and reoxygenation in isolated feline cardiac muscle. J Mol Cell Cardiol. 1980 Jan;12(1):109–133. doi: 10.1016/0022-2828(80)90114-5. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Han A., Sen A., Buja L. M., Willerson J. T. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 1984 Mar;54(3):313–322. doi: 10.1161/01.res.54.3.313. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Peau R. G., Farber J. L. Ischemic myocardial cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am J Pathol. 1979 Dec;97(3):505–529. [PMC free article] [PubMed] [Google Scholar]
- Chien K. R., Reeves J. P., Buja L. M., Bonte F., Parkey R. W., Willerson J. T. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ Res. 1981 May;48(5):711–719. doi: 10.1161/01.res.48.5.711. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Sen A., Reynolds R., Chang A., Kim Y., Gunn M. D., Buja L. M., Willerson J. T. Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury. J Clin Invest. 1985 Jun;75(6):1770–1780. doi: 10.1172/JCI111889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Gross R. W., Sobel B. E. Arrhythmogenic amphiphilic lipids and the myocardial cell membrane. J Mol Cell Cardiol. 1982 Nov;14(11):619–626. doi: 10.1016/0022-2828(82)90159-6. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Snyder D. W., Lee B. I., Gross R. W., Keim C. R., Sobel B. E. Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol. 1982 Aug;243(2):H187–H195. doi: 10.1152/ajpheart.1982.243.2.H187. [DOI] [PubMed] [Google Scholar]
- Crass M. F., 3rd, Pieper G. M. Lipid and glycogen metabolism in the hypoxic heart: effects of epinephrine. Am J Physiol. 1975 Oct;229(4):885–889. doi: 10.1152/ajplegacy.1975.229.4.885. [DOI] [PubMed] [Google Scholar]
- Durst H. D., Milano M., Kikta E. J., Jr, Connelly S. A., Grushka E. Phenacyl esters of fatty acids via crown ether catalysts for enhanced ultraviolet detection in liquid chromatography. Anal Chem. 1975 Sep;47(11):1797–1801. doi: 10.1021/ac60361a025. [DOI] [PubMed] [Google Scholar]
- Flaherty J. T., Weisfeldt M. L., Bulkley B. H., Gardner T. J., Gott V. L., Jacobus W. E. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation. 1982 Mar;65(3):561–570. doi: 10.1161/01.cir.65.3.561. [DOI] [PubMed] [Google Scholar]
- Jesmok G. J., Warltier D. C., Gross G. J., Hardman H. F. Transmural triglycerides in acute myocardial ischaemia. Cardiovasc Res. 1978 Nov;12(11):659–665. doi: 10.1093/cvr/12.11.659. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
- Liedtke A. J., Nellis S., Neely J. R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res. 1978 Oct;43(4):652–661. doi: 10.1161/01.res.43.4.652. [DOI] [PubMed] [Google Scholar]
- Lochner A., Kotzé J. C., Benade A. J., Gevers W. Mitochondrial oxidative phosphorylation in low-flow hypoxia: role of free fatty acids. J Mol Cell Cardiol. 1978 Sep;10(9):857–875. doi: 10.1016/0022-2828(78)90394-2. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Liebermeister H., Battersby E. J., Morgan H. E. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol. 1967 Apr;212(4):804–814. doi: 10.1152/ajplegacy.1967.212.4.804. [DOI] [PubMed] [Google Scholar]
- Pei P. T., Kossa W. C., Ramachandran S., Henly R. S. High pressure reverse phase liquid chromatography of fatty acid p-bromophenacyl esters. Lipids. 1976 Nov;11(11):814–816. doi: 10.1007/BF02533409. [DOI] [PubMed] [Google Scholar]
- Scheuer J., Brachfeld N. Myocardial uptake and fractional distribution of palmitate-1 C14 by the ischemic dog heart. Metabolism. 1966 Oct;15(10):945–954. doi: 10.1016/0026-0495(66)90165-x. [DOI] [PubMed] [Google Scholar]
- Shaikh N. A., Downar E. Time course of changes in porcine myocardial phospholipid levels during ischemia. A reassessment of the lysolipid hypothesis. Circ Res. 1981 Aug;49(2):316–325. doi: 10.1161/01.res.49.2.316. [DOI] [PubMed] [Google Scholar]
- Shier W. T., Dubourdieu D. J. Evidence for two calcium-dependent steps and a sodium-dependent step in the mechanism of cell killing by calcium ions in the presence of ionophore A23187. Am J Pathol. 1985 Aug;120(2):304–315. [PMC free article] [PubMed] [Google Scholar]
- Steenbergen C., Jennings R. B. Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J Mol Cell Cardiol. 1984 Jul;16(7):605–621. doi: 10.1016/s0022-2828(84)80625-2. [DOI] [PubMed] [Google Scholar]
- Vasdev S. C., Biro G. P., Narbaitz R., Kako K. J. Membrane changes induced by early myocardial ischemia in the dog. Can J Biochem. 1980 Oct;58(10):1112–1119. doi: 10.1139/o80-149. [DOI] [PubMed] [Google Scholar]
- Vasdev S. C., Kako K. J., Biro G. P. Phospholipid composition of cardiac mitochondria and lysosomes in experimental myocardial ischemia in the dog. J Mol Cell Cardiol. 1979 Nov;11(11):1195–1200. doi: 10.1016/s0022-2828(79)80007-3. [DOI] [PubMed] [Google Scholar]
- Wood J. M., Sordahl L. A., Lewis R. M., Schwartz A. Effect of chronic myocardial ischemia on the activity of carnitine palmitylcoenzyme A transferase of isolated canine heart mitochondria. Circ Res. 1973 Mar;32(3):340–347. doi: 10.1161/01.res.32.3.340. [DOI] [PubMed] [Google Scholar]
- van der Vusse G. J., Roemen T. H., Prinzen F. W., Coumans W. A., Reneman R. S. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res. 1982 Apr;50(4):538–546. doi: 10.1161/01.res.50.4.538. [DOI] [PubMed] [Google Scholar]
