Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 May;123(2):343–350.

Nephrotoxicity of ferric nitrilotriacetate. An electron-microscopic and metabolic study.

S Hamazaki, S Okada, Y Ebina, M Fujioka, O Midorikawa
PMCID: PMC1888317  PMID: 3706495

Abstract

Repeated intraperitoneal injections of ferric nitrilotriacetate (Fe-NTA) induce nephrotoxic features such as proximal tubular necrosis and renal failure, an unexpected phenomenon for a ferric compound. The mechanism of Fe-NTA toxicity was investigated by electron microscopy and respiration studies of renal cortical mitochondria in rats. Four hours after a single intraperitoneal injection of Fe-NTA, 5 mg iron/kg body wt, loss of microvilli, increased number of cytoplasmic vacuoles, electron-dense cytoplasmic deposits, mitochondrial swelling, karyorrhexis, and rupture of cytoplasmic membrane were observed in proximal tubular epithelia. At 24 hours, an increased number of cells had become necrotic. Polarographic studies of mitochondria from renal cortex 4 hours after Fe-NTA treatment showed a significant decrease in State 3 respiration and DNP-uncoupled respiration, whereas little change was observed in State 4 respiration and ADP/O.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awai M., Narasaki M., Yamanoi Y., Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol. 1979 Jun;95(3):663–673. [PMC free article] [PubMed] [Google Scholar]
  2. Fowler B. A., Kimmel C. A., Woods J. S., McConnell E. E., Grant L. D. Chronic low-level lead toxicity in the rat. III. An integrated assessment of long-term toxicity with special reference to the kidney. Toxicol Appl Pharmacol. 1980 Oct;56(1):59–77. doi: 10.1016/0041-008x(80)90131-3. [DOI] [PubMed] [Google Scholar]
  3. Ganote C. E., Nahara G. Acute ferrous sulfate hepatotoxicity in rats. An electron microscopic and biochemical study. Lab Invest. 1973 Apr;28(4):426–436. [PubMed] [Google Scholar]
  4. Ganote C. E., Reimer K. A., Jennings R. B. Acute mercuric chloride nephrotoxicity. An electron microscopic and metabolic study. Lab Invest. 1974 Dec;31(6):633–647. [PubMed] [Google Scholar]
  5. Goyer R. A. The renal tubule in lead poisoning. I. mMitochondrial swelling and aminoacidura. Lab Invest. 1968 Jul;19(1):71–77. [PubMed] [Google Scholar]
  6. Gritzka T. L., Trump B. F. Renal tubular lesions caused by mercuric chloride. Electron microscopic observations: degeneration of the pars recta. Am J Pathol. 1968 Jun;52(6):1225–1277. [PMC free article] [PubMed] [Google Scholar]
  7. Hamazaki S., Okada S., Ebina Y., Midorikawa O. Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol. 1985 Feb;77(2):267–274. doi: 10.1016/0041-008x(85)90326-6. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Maunsbach A. B. The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res. 1966 Jun;15(3):242–282. doi: 10.1016/s0022-5320(66)80109-0. [DOI] [PubMed] [Google Scholar]
  10. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  11. Mergner W. J., Chang S. H., Marzella L., Kahng M. W., Trump B. F. Studies on the pathogenesis of ischemic cell injury. VIII. ATPase of rat kidney mitochondria. Lab Invest. 1979 Jun;40(6):686–694. [PubMed] [Google Scholar]
  12. Mergner W. J., Marzella L., Mergner C., Kahng M. W., Smith M. W., Trump B. F. Studies on the pathogenesis of ischemic cell injury. VII. Proton gradient and respiration of renal tissue cubes, renal mitochondrial and submitochondrial particles following ischemic cell injury. Beitr Pathol. 1977 Nov;161(3):230–243. doi: 10.1016/s0005-8165(77)80079-6. [DOI] [PubMed] [Google Scholar]
  13. Mittnacht S., Jr, Sherman S. C., Farber J. L. Reversal of ischemic mitochondrial dysfunction. J Biol Chem. 1979 Oct 10;254(19):9871–9878. [PubMed] [Google Scholar]
  14. OLIVER J., MacDOWELL M., TRACY A. The pathogenesis of acute renal failure associated with traumatic and toxic injury; renal ischemia, nephrotoxic damage and the ischemic episode. J Clin Invest. 1951 Dec;30(121):1307–1439. doi: 10.1172/JCI102550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reimer K. A., Ganote C. E., Jennings R. B. Alterations in renal cortex following ischemic injury. 3. Ultrastructure of proximal tubules after ischemia or autolysis. Lab Invest. 1972 Apr;26(4):347–363. [PubMed] [Google Scholar]
  17. Singer T. P. Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases. Methods Biochem Anal. 1974;22:123–175. doi: 10.1002/9780470110423.ch3. [DOI] [PubMed] [Google Scholar]
  18. Smith R. A., Ord M. J. Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology. Int Rev Cytol. 1983;83:63–134. doi: 10.1016/s0074-7696(08)61686-1. [DOI] [PubMed] [Google Scholar]
  19. Weinberg J. M., Harding P. G., Humes H. D. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. II. Functional alterations of renal cortical mitochondria isolated after mercuric chloride treatment. J Biol Chem. 1982 Jan 10;257(1):68–74. [PubMed] [Google Scholar]
  20. Weiner M. W., Lardy H. A. Reduction of pyridine nucleotides induced by adenosine diphosphate in kidney mitochondria. The influence of sodium, magnesium, and inhibitors of oxidative phosphorylation. J Biol Chem. 1973 Nov 25;248(22):7682–7687. [PubMed] [Google Scholar]
  21. Yamanoi Y., Matsuura R., Awai M. Mechanism of iron toxicity in the liver and pancreas after a single injection of ferric nitrilotriacetate. Nihon Ketsueki Gakkai Zasshi. 1982 Dec;45(7):1229–1235. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES