Abstract
Two of the early changes that occur at sites of developing atherosclerotic lesions in pigeon aortas are monocyte adhesion and endothelial proliferation. We characterized these events in the abdominal aortas of lesion-free young pigeons and in mature birds that developed either naturally occurring or cholesterol-induced atherosclerosis. Compared with mature animals, very young (7-day-old) pigeons had elevated endothelial cell labeling with 3H-thymidine in normal regions of aorta as quantitated by scanning electron microscopy. All regions of atherosclerosis exhibited at least a fivefold increase in both monocyte adhesion and endothelial proliferation. Adhesion and proliferation were highest at the developing edge of lesions. When naturally occurring lesions of 5-year-old birds were compared with lesions of younger birds fed a 0.5% cholesterol-supplemented diet for either 15 or 52 weeks, monocyte adhesion and endothelial cell proliferation were found to be similar. The same parameters were studied after regression of atherosclerosis in pigeons fed 0.5% cholesterol-supplemented diet for 1 year, followed by cholesterol-free diet for 2, 6, or 11 months. The regression regimen resulted in significant reduction in both monocyte adhesion and endothelial proliferation at lesion sites. It is concluded that progressing atherosclerotic lesions, whether occurring naturally or exacerbated by cholesterol feeding, have similar and significant increases in monocyte adhesion and endothelial cell proliferation. Regression of atherosclerotic lesions is accompanied by a decrease in these two cellular events.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caplan B. A., Schwartz C. J. Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis. 1973 May-Jun;17(3):401–417. doi: 10.1016/0021-9150(73)90031-2. [DOI] [PubMed] [Google Scholar]
- Caplan B. A., Schwartz C. J. Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis. 1973 May-Jun;17(3):401–417. doi: 10.1016/0021-9150(73)90031-2. [DOI] [PubMed] [Google Scholar]
- Clarkson T. B., King J. S., Jr, Lofland H. B., Feldner M. A., Bullock B. C. Pathologic characteristics and composition of diet-aggravated atherosclerotic plaques during "regression". Exp Mol Pathol. 1973 Dec;19(3):267–283. doi: 10.1016/0014-4800(73)90059-2. [DOI] [PubMed] [Google Scholar]
- Clarkson T. B., Lofland H. B., Jr Response of pigeon arteries to cholesterol as a function of time. Arch Pathol. 1967 Nov;84(5):513–516. [PubMed] [Google Scholar]
- Florentin R. A., Nam S. C., Lee K. T., Lee K. J., Thomas W. A. Increased mitotic activity in aortas of swine after three days of cholesterol feeding. Arch Pathol. 1969 Nov;88(5):463–469. [PubMed] [Google Scholar]
- Gerrity R. G., Goss J. A., Soby L. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis. 1985 Jan-Feb;5(1):55–66. doi: 10.1161/01.atv.5.1.55. [DOI] [PubMed] [Google Scholar]
- Gerrity R. G., Naito H. K., Richardson M., Schwartz C. J. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol. 1979 Jun;95(3):775–792. [PMC free article] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
- Haust M. D. The morphogenesis and fate of potential and early atherosclerotic lesions in man. Hum Pathol. 1971 Mar;2(1):1–29. doi: 10.1016/s0046-8177(71)80019-9. [DOI] [PubMed] [Google Scholar]
- Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jerome W. G., Lewis J. C. Early atherogenesis in White Carneau pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation. Am J Pathol. 1984 Jul;116(1):56–68. [PMC free article] [PubMed] [Google Scholar]
- Jerome W. G., Lewis J. C. Early atherogenesis in White Carneau pigeons. II. Ultrastructural and cytochemical observations. Am J Pathol. 1985 May;119(2):210–222. [PMC free article] [PubMed] [Google Scholar]
- Jerome W. G., Lewis J. C., Taylor R. G., White M. S. Concurrent endothelial cell turnover and leukocyte margination in early atherosclerosis. Scan Electron Microsc. 1983;(Pt 3):1453–1459. [PubMed] [Google Scholar]
- Joris I., Zand T., Nunnari J. J., Krolikowski F. J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983 Dec;113(3):341–358. [PMC free article] [PubMed] [Google Scholar]
- Klurfeld D. M. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies. Arch Pathol Lab Med. 1985 May;109(5):445–449. [PubMed] [Google Scholar]
- Lewis J. C., Taylor R. G., Jerome W. G. Foam cell characteristics in coronary arteries and aortas of White Carneau pigeons with moderate hypercholesterolemia. Ann N Y Acad Sci. 1985;454:91–100. doi: 10.1111/j.1749-6632.1985.tb11847.x. [DOI] [PubMed] [Google Scholar]
- Lewis J. C., Taylor R. G., Jones N. D., St Clair R. W., Cornhill J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab Invest. 1982 Feb;46(2):123–138. [PubMed] [Google Scholar]
- McGill H. C., Jr George Lyman Duff memorial lecture. Persistent problems in the pathogenesis of atherosclerosis. Arteriosclerosis. 1984 Sep-Oct;4(5):443–451. doi: 10.1161/01.atv.4.5.443. [DOI] [PubMed] [Google Scholar]
- PRICHARD R. W., CLARKSON T. B., LOFLAND H. B., COODMAN H. O. PIGEON ATHEROSCLEROSIS. Am Heart J. 1964 May;67:715–717. doi: 10.1016/0002-8703(64)90348-5. [DOI] [PubMed] [Google Scholar]
- Santerre R. F., Wight T. N., Smith S. C., Brannigan D. Spontaneous atherosclerosis in pigeons. A model system for studying metabolic parameters associated with atherogenesis. Am J Pathol. 1972 Apr;67(1):1–22. [PMC free article] [PubMed] [Google Scholar]
- Stary H. C. Coronary artery fine structure in rhesus monkeys: the early atherosclerotic lesion and its progression. Primates Med. 1976;9:359–395. [PubMed] [Google Scholar]
- Stary H. C. Proliferation of arterial cells in atherosclerosis. Adv Exp Med Biol. 1974;43(0):59–81. doi: 10.1007/978-1-4684-3243-5_4. [DOI] [PubMed] [Google Scholar]
- Steinberg D. Lipoproteins and atherosclerosis. A look back and a look ahead. Arteriosclerosis. 1983 Jul-Aug;3(4):283–301. doi: 10.1161/01.atv.3.4.283. [DOI] [PubMed] [Google Scholar]
- Vlodavsky I., Gospodarowicz D. Structural and functional alterations in the surface of vascular endothelial cells associated with the formation of a confluent cell monolayer and with the withdrawal of fibroblast growth factor. J Supramol Struct. 1979;12(1):73–114. doi: 10.1002/jss.400120108. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Hirata M., Yoshikawa Y., Nagafuchi Y., Toyoshima H., Watanabe T. Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab Invest. 1985 Jul;53(1):80–90. [PubMed] [Google Scholar]