Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Dec;125(3):501–514.

Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways.

K B Adler, D D Hendley, G S Davis
PMCID: PMC1888456  PMID: 3099581

Abstract

Certain cell-free filtrates from broth cultures of Pseudomonas aeruginosa, Hemophilus influenzae and Streptococcus pneumoniae stimulate secretion of glycoconjugates by explants of guinea pig trachea. The stimulatory effect is not related to toxicity or damage to the respiratory mucosa, as well as could be determined by ultrastructural examination of the explants after exposure. Bacteria isolated from patients with a history of chronic obstructive lung disease (P aeruginosa from cystic fibrosis, H influenzae, and S pneumoniae from chronic bronchitis) do not demonstrate increased frequency of positive strains or greater stimulation of secretion than organisms isolated from other individuals. At least three stimulatory substances are found in cell-free filtrates of P aeruginosa. They appear to be proteins of molecular weight 60,000-100,000 as determined by gel filtration. Within the crude filtrate, they are relatively stable to heat, proteolysis, and storage at 4 C and in liquid nitrogen. The stimulatory activity is not lost upon subculture of the bacteria. When isolated from the filtrate by column chromatography, they become labile to heat and trypsin. Isolated active fractions show proteolytic activity coinciding with mucin-stimulating capacity, suggesting a relationship with Pseudomonas proteases. Stimulatory substances released by S pneumoniae and H influenzae appear to be different from those elaborated by Pseudomonas. They are extremely labile to heat and storage, and the capacity to stimulate secretion is lost on subculture. Preliminary gel filtration indicates the S pneumoniae stimulatory substance(s) is in a molecular weight range of 100,000-300,000 daltons, while that of H influenzae is between 50,000 and 200,000. The results suggest bacteria which chronically infect or colonize respiratory airways of individuals suffering from obstructive lung disease can elaborate extracellular product(s) capable of stimulating secretion of mucin. Thus, the bacteria themselves may contribute to local manifestations and, ultimately, to the pathogenesis of obstructive disease.

Full text

PDF
501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler K. B., Alberghini T. V., Counts D. F., Auletta F. J. Secretion of mucin by explants of rabbit and human cervix in organ culture. Biol Reprod. 1983 Oct;29(3):751–765. doi: 10.1095/biolreprod29.3.751. [DOI] [PubMed] [Google Scholar]
  2. Adler K. B., Brody A. R., Craighead J. E. Studies on the mechanism of mucin secretion by cells of the porcine tracheal epithelium. Proc Soc Exp Biol Med. 1981 Jan;166(1):96–106. doi: 10.3181/00379727-166-41030. [DOI] [PubMed] [Google Scholar]
  3. Adler K. B., Hardwick D. H., Craighead J. E. Effect of cholera toxin on secretion of mucin by explants of guinea pig trachea. Lab Invest. 1981 Oct;45(4):372–377. [PubMed] [Google Scholar]
  4. Adler K. B., Mossman B. T., Butler G. B., Jean L. M., Craighead J. E. Interaction of Mount St. Helens' volcanic ash with cells of the respiratory epithelium. Environ Res. 1984 Dec;35(2):346–361. doi: 10.1016/0013-9351(84)90142-7. [DOI] [PubMed] [Google Scholar]
  5. Adler K. B., Winn W. C., Jr, Alberghini T. V., Craighead J. E. Stimulatory effect of Pseudomonas aeruginosa on mucin secretion by the respiratory epithelium. JAMA. 1983 Mar 25;249(12):1615–1617. [PubMed] [Google Scholar]
  6. Berka R. M., Gray G. L., Vasil M. L. Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect Immun. 1981 Dec;34(3):1071–1074. doi: 10.1128/iai.34.3.1071-1074.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blatt W. F., Robinson S. M., Bixler H. J. Membrane ultrafiltration: the diafiltration technique and its application to microsolute exchange and binding phenomena. Anal Biochem. 1968 Oct 10;26(1):151–173. doi: 10.1016/0003-2697(68)90039-0. [DOI] [PubMed] [Google Scholar]
  8. Bremm K. D., Brom J., König W., Spur B., Crea A., Bhakdi S., Lutz F., Fehrenbach F. J. Generation of leukotrienes and lipoxygenase factors from human polymorphonuclear granulocytes during bacterial phagocytosis and interaction with bacterial exotoxins. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Jul;254(4):500–514. [PubMed] [Google Scholar]
  9. Carrick L., Jr, Berk R. S. Purification and partial characterization of a collagenolytic enzyme from Pseudomonas aeruginosa. Biochim Biophys Acta. 1975 Jun 24;391(2):422–434. doi: 10.1016/0005-2744(75)90267-3. [DOI] [PubMed] [Google Scholar]
  10. Coles S. J., Neill K. H., Reid L. M., Austen K. F., Nii Y., Corey E. J., Lewis R. A. Effects of leukotrienes C4 and D4 on glycoprotein and lysozyme secretion by human bronchial mucosa. Prostaglandins. 1983 Feb;25(2):155–170. doi: 10.1016/0090-6980(83)90101-6. [DOI] [PubMed] [Google Scholar]
  11. Coles S. J., Reid L. Inhibition of glycoconjugate secretion by colchicine and cytochalasin B. An in vitro study of human airway. Cell Tissue Res. 1981;214(1):107–118. doi: 10.1007/BF00235149. [DOI] [PubMed] [Google Scholar]
  12. Döring G., Obernesser H. J., Botzenhart K., Flehmig B., Høiby N., Hofmann A. Proteases of Pseudomonas aeruginosa in patients with cystic fibrosis. J Infect Dis. 1983 Apr;147(4):744–750. doi: 10.1093/infdis/147.4.744. [DOI] [PubMed] [Google Scholar]
  13. Evans L. R., Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973 Nov;116(2):915–924. doi: 10.1128/jb.116.2.915-924.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FISHER E., Jr, ALLEN J. H. Corneal ulcers produced by cell-free extracts of Pseudomonas aeruginosa. Am J Ophthalmol. 1958 Jul;46(1 Pt 2):21–27. doi: 10.1016/0002-9394(58)90030-8. [DOI] [PubMed] [Google Scholar]
  15. Gray L., Kreger A. Microscopic characterization of rabbit lung damage produced by Pseudomonas aeruginosa proteases. Infect Immun. 1979 Jan;23(1):150–159. doi: 10.1128/iai.23.1.150-159.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gump D. W., Phillips C. A., Forsyth B. R., McIntosh K., Lamborn K. R., Stouch W. H. Role of infection in chronic bronchitis. Am Rev Respir Dis. 1976 Apr;113(4):465–474. doi: 10.1164/arrd.1976.113.4.465. [DOI] [PubMed] [Google Scholar]
  17. Hastie A. T., Hingley S. T., Kueppers F., Higgins M. L., Tannenbaum C. S., Weinbaum G. Protease production by Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Infect Immun. 1983 May;40(2):506–513. doi: 10.1128/iai.40.2.506-513.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirayama T., Kato I. Mode of cytotoxic action of pseudomonal leukocidin on phosphatidylinositol metabolism and activation of lysosomal enzyme in rabbit leukocytes. Infect Immun. 1984 Jan;43(1):21–27. doi: 10.1128/iai.43.1.21-27.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoiby N. Prevalence of mucoid strains of Pseudomonas aeruginosa in bacteriological specimens from patients with cystic fibrosis and patients with other diseases. Acta Pathol Microbiol Scand Suppl. 1975 Dec;83(6):549–552. [PubMed] [Google Scholar]
  20. Hoiby N. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Acta Pathol Microbiol Scand Suppl. 1977;(262):1–96. [PubMed] [Google Scholar]
  21. Kharazmi A., Döring G., Høiby N., Valerius N. H. Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun. 1984 Jan;43(1):161–165. doi: 10.1128/iai.43.1.161-165.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klinger J. D., Tandler B., Liedtke C. M., Boat T. F. Proteinases of Pseudomonas aeruginosa evoke mucin release by tracheal epithelium. J Clin Invest. 1984 Nov;74(5):1669–1678. doi: 10.1172/JCI111583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kulczycki L. L., Murphy T. M., Bellanti J. A. Pseudomonas colonization in cystic fibrosis. A study of 160 patients. JAMA. 1978 Jul 7;240(1):30–34. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. LaMont J. T., Turner B. S., DiBenedetto D., Handin R., Schafer A. I. Arachidonic acid stimulates mucin secretion in prairie dog gallbladder. Am J Physiol. 1983 Jul;245(1):G92–G98. doi: 10.1152/ajpgi.1983.245.1.G92. [DOI] [PubMed] [Google Scholar]
  26. Lutz F. Purification of a cytotoxic protein from Pseudomonas aeruginosa. Toxicon. 1979;17(5):467–475. doi: 10.1016/0041-0101(79)90280-0. [DOI] [PubMed] [Google Scholar]
  27. MORIHARA K., TSUZUKI H. PSEUDOMONAS AERUGINOSA PEPTIDE PEPTIDOHYDROLASE. 3. SOME CHARACTERS AS A CA2+-METALLOENZYME. Biochim Biophys Acta. 1964 Nov 22;92:351–360. [PubMed] [Google Scholar]
  28. Marom Z., Shelhamer J. H., Bach M. K., Morton D. R., Kaliner M. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis. 1982 Sep;126(3):449–451. doi: 10.1164/arrd.1982.126.3.449. [DOI] [PubMed] [Google Scholar]
  29. Oppenheimer E. H. Similarity of the tracheobronchial mucous glands and epithelium in infants with and without cystic fibrosis. Hum Pathol. 1981 Jan;12(1):36–48. doi: 10.1016/s0046-8177(81)80240-7. [DOI] [PubMed] [Google Scholar]
  30. Pollack M. Pseudomonas aeruginosa exotoxin A. N Engl J Med. 1980 Jun 12;302(24):1360–1362. doi: 10.1056/NEJM198006123022410. [DOI] [PubMed] [Google Scholar]
  31. Reimer A., Klementsson K., Ursing J., Wretlind B. The mucociliary activity of the respiratory tract. I. Inhibitory effects of products of Pseudomonas aeruginosa on rabbit trachea in vitro. Acta Otolaryngol. 1980 Nov-Dec;90(5-6):462–469. doi: 10.3109/00016488009131749. [DOI] [PubMed] [Google Scholar]
  32. Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966 Jan 10;241(1):130–139. [PubMed] [Google Scholar]
  33. Scharmann W. Purification and characterization of leucocidin from Pseudomonas aeruginosa. J Gen Microbiol. 1976 Apr;93(2):292–302. doi: 10.1099/00221287-93-2-292. [DOI] [PubMed] [Google Scholar]
  34. Shelhamer J. H., Marom Z., Logun C., Kaliner M. Human respiratory mucous glycoproteins. Exp Lung Res. 1984;7(2):149–162. doi: 10.3109/01902148409069675. [DOI] [PubMed] [Google Scholar]
  35. Sorensen R. U., Klinger J. D., Cash H. A., Chase P. A., Dearborn D. G. In vitro inhibition of lymphocyte proliferation by Pseudomonas aeruginosa phenazine pigments. Infect Immun. 1983 Jul;41(1):321–330. doi: 10.1128/iai.41.1.321-330.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sturgess J., Imrie J. Quantitative evaluation of the development of tracheal submucosal glands in infants with cystic fibrosis and control infants. Am J Pathol. 1982 Mar;106(3):303–311. [PMC free article] [PubMed] [Google Scholar]
  37. Suttorp N., Seeger W., Uhl J., Lutz F., Roka L. Pseudomonas aeruginosa cytotoxin stimulates prostacyclin production in cultured pulmonary artery endothelial cells: membrane attack and calcium influx. J Cell Physiol. 1985 Apr;123(1):64–72. doi: 10.1002/jcp.1041230111. [DOI] [PubMed] [Google Scholar]
  38. Tager I., Speizer F. E. Role of infection in chronic bronchitis. N Engl J Med. 1975 Mar 13;292(11):563–571. doi: 10.1056/NEJM197503132921105. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES