Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1986 Dec;125(3):601–610.

Regional heterogeneity of glycoconjugate distribution in the glomerulus revealed by lectin-gold cytochemistry and SDS-PAGE.

D Brown, J D Vassalli, A Kunz, J Mühlhauser, L Orci, J Mulhauser
PMCID: PMC1888461  PMID: 2432793

Abstract

The authors have used SDS-PAGE and lectin overlay analysis in parallel with lectin-gold cytochemistry to identify Helix pomatia lectin (HPL) binding glycoconjugates in rat kidney glomeruli. Previous work revealed HPL binding sites only beneath podocyte foot process bases, where they contact the glomerular basement membrane. It is shown here that after neuraminidase digestion of thin sections of glomeruli before incubation with HPL-gold complexes, the number of HPL binding sites is markedly increased. These new sites are mainly associated with the podocyte free surface (adjacent to the urinary space) and with capillary endothelial cells. By lectin overlays, this neuraminidase-dependent HPL binding was shown to be due to reaction of the lectin with desialylated podocalyxin. In contrast, HPL binding sites detected prior to neuraminidase digestion are associated with a novel glycoconjugate having a lower electrophoretic mobility than podocalyxin. Although any role for this glycoconjugate is at present speculative, it is strategically positioned at the site of interaction between foot process bases and the glomerular basement membrane. Its presence correlates with normal podocyte architecture, as shown by our previous studies on developmental and aminonucleoside nephrosis-associated changes in HPL binding to podocytes.

Full text

PDF
601

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armbruster B. L., Carlemalm E., Chiovetti R., Garavito R. M., Hobot J. A., Kellenberger E., Villiger W. Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc. 1982 Apr;126(Pt 1):77–85. doi: 10.1111/j.1365-2818.1982.tb00358.x. [DOI] [PubMed] [Google Scholar]
  2. Baker D. A., Sugii S., Kabat E. A., Ratcliffe R. M., Hermentin P., Lemieux R. U. Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia, and Wistaria floribunda. Biochemistry. 1983 May 24;22(11):2741–2750. doi: 10.1021/bi00280a023. [DOI] [PubMed] [Google Scholar]
  3. Bretton R., Bariety J. A comparative ultrastructural localization of concanavalin A, wheat germ and Ricinus communis on glomeruli of normal rat kidney. J Histochem Cytochem. 1976 Oct;24(10):1093–1100. doi: 10.1177/24.10.977938. [DOI] [PubMed] [Google Scholar]
  4. Faraggiana T., Malchiodi F., Prado A., Churg J. Lectin-peroxidase conjugate reactivity in normal human kidney. J Histochem Cytochem. 1982 May;30(5):451–458. doi: 10.1177/30.5.7077075. [DOI] [PubMed] [Google Scholar]
  5. Geoghegan W. D., Ackerman G. A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem. 1977 Nov;25(11):1187–1200. doi: 10.1177/25.11.21217. [DOI] [PubMed] [Google Scholar]
  6. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  7. Green M. R., Pastewka J. V. Identification of sialic acid-rich glycoproteins on polyacrylamide gels. Anal Biochem. 1975 May 12;65(1-2):66–72. doi: 10.1016/0003-2697(75)90491-1. [DOI] [PubMed] [Google Scholar]
  8. Groniowski J., Biczyskowa W., Walski M. Electron microscope studies on the surface coat of the nephron. J Cell Biol. 1969 Mar;40(3):585–601. doi: 10.1083/jcb.40.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hammarström S., Murphy L. A., Goldstein I. J., Etzler M. E. Carbohydrate binding specificity of four N-acetyl-D-galactosamine- "specific" lectins: Helix pomatia A hemagglutinin, soy bean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry. 1977 Jun 14;16(12):2750–2755. doi: 10.1021/bi00631a025. [DOI] [PubMed] [Google Scholar]
  10. Horisberger M. Colloidal gold : a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. Scan Electron Microsc. 1981;(Pt 2):9–31. [PubMed] [Google Scholar]
  11. Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
  12. KRAKOWER C. A., GREENSPON S. A. Localization of the nephrotoxic antigen within the isolated renal glomerulus. AMA Arch Pathol. 1951 Jun;51(6):629–639. [PubMed] [Google Scholar]
  13. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerjaschki D. Polycation-induced dislocation of slit diaphragms and formation of cell junctions in rat kidney glomeruli: the effects of low temperature, divalent cations, colchicine, and cytochalasin B. Lab Invest. 1978 Nov;39(5):430–440. [PubMed] [Google Scholar]
  16. Kerjaschki D., Sharkey D. J., Farquhar M. G. Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 1984 Apr;98(4):1591–1596. doi: 10.1083/jcb.98.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kerjaschki D., Vernillo A. T., Farquhar M. G. Reduced sialylation of podocalyxin--the major sialoprotein of the rat kidney glomerulus--in aminonucleoside nephrosis. Am J Pathol. 1985 Mar;118(3):343–349. [PMC free article] [PubMed] [Google Scholar]
  18. Kunz A., Brown D., Orci L. Appearance of Helix pomatia lectin-binding sites on podocyte plasma membrane during glomerular differentiation. A quantitative analysis using the lectin-gold technique. Lab Invest. 1984 Sep;51(3):317–324. [PubMed] [Google Scholar]
  19. Kunz A., Brown D., Vassalli J. D., Kontturi M., Kumpulainen T., Orci L. Ultrastructural localization of glycocalyx domains in human kidney podocytes using the lectin-gold technique. Lab Invest. 1985 Oct;53(4):413–420. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lotan R., Skutelsky E., Danon D., Sharon N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem. 1975 Nov 10;250(21):8518–8523. [PubMed] [Google Scholar]
  22. Maxwell M. H. Two rapid and simple methods used for the removal of resins from 1.0 micron thick epoxy sections. J Microsc. 1978 Mar;112(2):253–255. doi: 10.1111/j.1365-2818.1978.tb01174.x. [DOI] [PubMed] [Google Scholar]
  23. Orci L., Brown D., Amherdt M., Perrelet A. Distribution of intramembrane particles and filipin-sterol complexes in plasma membranes of kidney. I. Corpuscle of Malpighi. Lab Invest. 1982 Jun;46(6):545–553. [PubMed] [Google Scholar]
  24. Orci L., Kunz A., Amherdt M., Brown D. Perturbation of podocyte plasma membrane domains in experimental nephrosis. A lectin-binding and freeze-fracture study. Am J Pathol. 1984 Nov;117(2):286–297. [PMC free article] [PubMed] [Google Scholar]
  25. Orci L., Singh A., Amherdt M., Brown D., Perrelet A. Microheterogeneity of protein and sterol content in kidney podocyte membrane. Nature. 1981 Oct 22;293(5834):646–647. doi: 10.1038/293646a0. [DOI] [PubMed] [Google Scholar]
  26. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roth J. Application of lectin--gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem. 1983 Aug;31(8):987–999. doi: 10.1177/31.8.6190857. [DOI] [PubMed] [Google Scholar]
  28. Roth J., Brown D., Orci L. Regional distribution of N-acetyl-D-galactosamine residues in the glycocalyx of glomerular podocytes. J Cell Biol. 1983 May;96(5):1189–1196. doi: 10.1083/jcb.96.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seiler M. W., Rennke H. G., Venkatachalam M. A., Cotran R. S. Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. Lab Invest. 1977 Jan;36(1):48–61. [PubMed] [Google Scholar]
  30. Stow J. L., Sawada H., Farquhar M. G. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci U S A. 1985 May;82(10):3296–3300. doi: 10.1073/pnas.82.10.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vassalli J. D., Dayer J. M., Wohlwend A., Belin D. Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages. J Exp Med. 1984 Jun 1;159(6):1653–1668. doi: 10.1084/jem.159.6.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES