Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Apr;69(4):2153–2158. doi: 10.1128/jvi.69.4.2153-2158.1995

Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice.

U Steinhoff 1, U Müller 1, A Schertler 1, H Hengartner 1, M Aguet 1, R M Zinkernagel 1
PMCID: PMC188883  PMID: 7884863

Abstract

The role of innate, alpha/beta interferon (IFN-alpha/beta)-dependent protection versus specific antibody-mediated protection against vesicular stomatitis virus (VSV) was evaluated in IFN-alpha/beta receptor-deficient mice (IFN-alpha/beta R0/0 mice). VSV is a close relative to rabies virus that causes neurological disease in mice. In contrast to normal mice, IFN-alpha/beta R0/0 mice were highly susceptible to infection with VSV because of ubiquitous high viral replication. Adoptive transfer experiments showed that neutralizing antibodies against the glycoprotein of VSV (VSV-G) protected these mice efficiently against systemic infection and against peripheral subcutaneous infection but protected only to a limited degree against intranasal infection with VSV. In contrast, VSV-specific T cells or antibodies specific for the nucleoprotein of VSV (VSV-N) were unable to protect IFN-alpha/beta R0/0 mice against VSV. These results demonstrate that mice are extremely sensitive to VSV if IFN-alpha/beta is not functional and that under these conditions, neutralizing antibody responses mediate efficient protection, but apparently only against extraneuronal infection.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann M. F., Bast C., Hengartner H., Zinkernagel R. M. Immunogenicity of a viral model vaccine after different inactivation procedures. Med Microbiol Immunol. 1994 May;183(2):95–104. doi: 10.1007/BF00277160. [DOI] [PubMed] [Google Scholar]
  2. Bachmann M. F., Kündig T. M., Kalberer C. P., Hengartner H., Zinkernagel R. M. Formalin inactivation of vesicular stomatitis virus impairs T-cell- but not T-help-independent B-cell responses. J Virol. 1993 Jul;67(7):3917–3922. doi: 10.1128/jvi.67.7.3917-3922.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao B. N., Huneycutt B. S., Gapud C. P., Arceci R. J., Reiss C. S. Lymphokine expression profile of resting and stimulated CD4+ CTL clones specific for the glycoprotein of vesicular stomatitis virus. Cell Immunol. 1993 Jan;146(1):147–156. doi: 10.1006/cimm.1993.1013. [DOI] [PubMed] [Google Scholar]
  4. Dietzschold B., Ertl H. C. New developments in the pre- and post-exposure treatment of rabies. Crit Rev Immunol. 1991;10(5):427–439. [PubMed] [Google Scholar]
  5. Fu Z. F., Dietzschold B., Schumacher C. L., Wunner W. H., Ertl H. C., Koprowski H. Rabies virus nucleoprotein expressed in and purified from insect cells is efficacious as a vaccine. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2001–2005. doi: 10.1073/pnas.88.5.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  7. Gobet R., Cerny A., Rüedi E., Hengartner H., Zinkernagel R. M. The role of antibodies in natural and acquired resistance of mice to vesicular stomatitis virus. Exp Cell Biol. 1988;56(4):175–180. doi: 10.1159/000163477. [DOI] [PubMed] [Google Scholar]
  8. Gresser I., Tovey M. G., Bandu M. E., Maury C., Brouty-Boyé D. Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. I. Rapid evolution of encephalomyocarditis virus infection. J Exp Med. 1976 Nov 2;144(5):1305–1315. doi: 10.1084/jem.144.5.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huneycutt B. S., Bi Z., Aoki C. J., Reiss C. S. Central neuropathogenesis of vesicular stomatitis virus infection of immunodeficient mice. J Virol. 1993 Nov;67(11):6698–6706. doi: 10.1128/jvi.67.11.6698-6706.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huneycutt B. S., Plakhov I. V., Shusterman Z., Bartido S. M., Huang A., Reiss C. S., Aoki C. Distribution of vesicular stomatitis virus proteins in the brains of BALB/c mice following intranasal inoculation: an immunohistochemical analysis. Brain Res. 1994 Jan 28;635(1-2):81–95. doi: 10.1016/0006-8993(94)91426-5. [DOI] [PubMed] [Google Scholar]
  11. Kelley J. M., Emerson S. U., Wagner R. R. The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. J Virol. 1972 Dec;10(6):1231–1235. doi: 10.1128/jvi.10.6.1231-1235.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kündig T. M., Castelmur I., Bachmann M. F., Abraham D., Binder D., Hengartner H., Zinkernagel R. M. Fewer protective cytotoxic T-cell epitopes than T-helper-cell epitopes on vesicular stomatitis virus. J Virol. 1993 Jun;67(6):3680–3683. doi: 10.1128/jvi.67.6.3680-3683.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lefrancios L., Lyles D. S. The interactionof antiody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology. 1982 Aug;121(1):157–167. [PubMed] [Google Scholar]
  14. Lefrancois L. Protection against lethal viral infection by neutralizing and nonneutralizing monoclonal antibodies: distinct mechanisms of action in vivo. J Virol. 1984 Jul;51(1):208–214. doi: 10.1128/jvi.51.1.208-214.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leist T. P., Cobbold S. P., Waldmann H., Aguet M., Zinkernagel R. M. Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol. 1987 Apr 1;138(7):2278–2281. [PubMed] [Google Scholar]
  16. Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991 Nov 8;254(5033):856–860. doi: 10.1126/science.1658936. [DOI] [PubMed] [Google Scholar]
  17. Lodmell D. L., Esposito J. J., Ewalt L. C. Rabies virus antinucleoprotein antibody protects against rabies virus challenge in vivo and inhibits rabies virus replication in vitro. J Virol. 1993 Oct;67(10):6080–6086. doi: 10.1128/jvi.67.10.6080-6086.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lodmell D. L., Sumner J. W., Esposito J. J., Bellini W. J., Ewalt L. C. Raccoon poxvirus recombinants expressing the rabies virus nucleoprotein protect mice against lethal rabies virus infection. J Virol. 1991 Jun;65(6):3400–3405. doi: 10.1128/jvi.65.6.3400-3405.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mackett M., Yilma T., Rose J. K., Moss B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science. 1985 Jan 25;227(4685):433–435. doi: 10.1126/science.2981435. [DOI] [PubMed] [Google Scholar]
  20. McLAREN L. C., HOLLAND J. J., SYVERTON J. T. The mammalian cell-virus relationship. I. Attachment of poliovirus to cultivated cells of primate and non-primate origin. J Exp Med. 1959 May 1;109(5):475–485. doi: 10.1084/jem.109.5.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyoshi K., Harter D. H., Hsu K. C. Neuropathological and immunofluorescence studies of experimental vesicular stomatitis virus encephalitis in mice. J Neuropathol Exp Neurol. 1971 Apr;30(2):266–277. doi: 10.1097/00005072-197104000-00008. [DOI] [PubMed] [Google Scholar]
  22. Moskophidis D., Frei K., Löhler J., Fontana A., Zinkernagel R. M. Production of random classes of immunoglobulins in brain tissue during persistent viral infection paralleled by secretion of interleukin-6 (IL-6) but not IL-4, IL-5, and gamma interferon. J Virol. 1991 Mar;65(3):1364–1369. doi: 10.1128/jvi.65.3.1364-1369.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moskophidis D., Löhler J., Lehmann-Grube F. Antiviral antibody-producing cells in parenchymatous organs during persistent virus infection. J Exp Med. 1987 Mar 1;165(3):705–719. doi: 10.1084/jem.165.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Müller U., Steinhoff U., Reis L. F., Hemmi S., Pavlovic J., Zinkernagel R. M., Aguet M. Functional role of type I and type II interferons in antiviral defense. Science. 1994 Jun 24;264(5167):1918–1921. doi: 10.1126/science.8009221. [DOI] [PubMed] [Google Scholar]
  25. Osler A. G. Immunology of reaginic allergy: in vitro studies. Clin Exp Immunol. 1970 Jan;6(1):13–23. [PMC free article] [PubMed] [Google Scholar]
  26. Rosenthal K. L., Zinkernagel R. M. Cross-reactive cytotoxic T cells to serologically distinct vesicular stomatitis virus. J Immunol. 1980 May;124(5):2301–2308. [PubMed] [Google Scholar]
  27. Wiktor T. J., Macfarlan R. I., Reagan K. J., Dietzschold B., Curtis P. J., Wunner W. H., Kieny M. P., Lathe R., Lecocq J. P., Mackett M. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7194–7198. doi: 10.1073/pnas.81.22.7194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES