Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Apr;69(4):2194–2207. doi: 10.1128/jvi.69.4.2194-2207.1995

Human cytomegalovirus (HCMV) immediate-early enhancer/promoter specificity during embryogenesis defines target tissues of congenital HCMV infection.

M Koedood 1, A Fichtel 1, P Meier 1, P J Mitchell 1
PMCID: PMC188888  PMID: 7884867

Abstract

Congenital human cytomegalovirus (HCMV) infection is a common cause of deafness and neurological disabilities. Many aspects of this prenatal infection, including which cell types are infected and how infection proceeds, are poorly understood. Transcription of HCMV immediate-early (IE) genes is required for expression of all other HCMV genes and is dependent on host cell transcription factors. Cell type-specific differences in levels of IE transcription are believed to underlie differences in infection permissivity. However, DNA transfection experiments have paradoxically suggested that the HCMV major IE enhancer/promoter is a broadly active transcriptional element with little cell type specificity. In contrast, we show here that expression of a lacZ gene driven by the HCMV major IE enhancer/promoter -524 to +13 segment is restricted in transgenic mouse embryos to sites that correlate with known sites of congenital HCMV infection in human fetuses. This finding suggests that the IE enhancer/promoter is a major determinant of HCMV infection sites in humans and that transcription factors responsible for its regulation are cell type-specifically conserved between humans and mice. The lacZ expression patterns of these transgenic embryos yield insight into congenital HCMV pathogenesis by providing a spatiotemporal map of the sets of vascular, neural, and epithelial cells that are likely targets of infection. These transgenic mice may constitute a useful model system for investigating IE enhancer/promoter regulation in vivo and for identifying factors that modulate active and latent HCMV infections in humans.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altshuler G., McAdams A. J. Cytomegalic inclusion disease of a nineteen-week fetus. Case report including a study of the placenta. Am J Obstet Gynecol. 1971 Sep 15;111(2):295–298. doi: 10.1016/0002-9378(71)90905-7. [DOI] [PubMed] [Google Scholar]
  2. Baskar J. F., Furnari B., Huang E. S. Demonstration of developmental anomalies in mouse fetuses by transfer of murine cytomegalovirus DNA-injected eggs to surrogate mothers. J Infect Dis. 1993 Jun;167(6):1288–1295. doi: 10.1093/infdis/167.6.1288. [DOI] [PubMed] [Google Scholar]
  3. Beck S., Barrell B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature. 1988 Jan 21;331(6153):269–272. doi: 10.1038/331269a0. [DOI] [PubMed] [Google Scholar]
  4. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985 Jun;41(2):521–530. doi: 10.1016/s0092-8674(85)80025-8. [DOI] [PubMed] [Google Scholar]
  5. Collazo A., Fraser S. E., Mabee P. M. A dual embryonic origin for vertebrate mechanoreceptors. Science. 1994 Apr 15;264(5157):426–430. doi: 10.1126/science.8153631. [DOI] [PubMed] [Google Scholar]
  6. Davis G. L., Hawrisiak M. M. Experimental cytomegalovirus infection and the developing mouse inner ear: in vivo and in vitro studies. Lab Invest. 1977 Jul;37(1):20–29. [PubMed] [Google Scholar]
  7. Davis G. L., Spector G. J., Strauss M., Middlekamp J. N. Cytomegalovirus endolabyrinthitis. Arch Pathol Lab Med. 1977 Mar;101(3):118–121. [PubMed] [Google Scholar]
  8. Davis L. E., Tweed G. V., Stewart J. A., Bernstein M. T., Miller G. L., Gravelle C. R., Chin T. D. Cytomegalovirus mononucleosis in a first trimester pregnant female with transmission to the fetus. Pediatrics. 1971 Aug;48(2):200–206. [PubMed] [Google Scholar]
  9. DePamphilis M. L., Herman S. A., Martínez-Salas E., Chalifour L. E., Wirak D. O., Cupo D. Y., Miranda M. Microinjecting DNA into mouse ova to study DNA replication and gene expression and to produce transgenic animals. Biotechniques. 1988 Jul-Aug;6(7):662–680. [PubMed] [Google Scholar]
  10. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  11. Dorsch-Häsler K., Keil G. M., Weber F., Jasin M., Schaffner W., Koszinowski U. H. A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8325–8329. doi: 10.1073/pnas.82.24.8325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Downey G. P., Doherty D. E., Schwab B., 3rd, Elson E. L., Henson P. M., Worthen G. S. Retention of leukocytes in capillaries: role of cell size and deformability. J Appl Physiol (1985) 1990 Nov;69(5):1767–1778. doi: 10.1152/jappl.1990.69.5.1767. [DOI] [PubMed] [Google Scholar]
  13. Fitzgerald N. A., Papadimitriou J. M., Shellam G. R. Cytomegalovirus-induced pneumonitis and myocarditis in newborn mice. A model for perinatal human cytomegalovirus infection. Arch Virol. 1990;115(1-2):75–88. doi: 10.1007/BF01310624. [DOI] [PubMed] [Google Scholar]
  14. Foecking M. K., Hofstetter H. Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene. 1986;45(1):101–105. doi: 10.1016/0378-1119(86)90137-x. [DOI] [PubMed] [Google Scholar]
  15. Furth P. A., Hennighausen L., Baker C., Beatty B., Woychick R. The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice. Nucleic Acids Res. 1991 Nov 25;19(22):6205–6208. doi: 10.1093/nar/19.22.6205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gan L., Wessel G. M., Klein W. H. Regulatory elements from the related spec genes of Strongylocentrotus purpuratus yield different spatial patterns with a lacZ reporter gene. Dev Biol. 1990 Dec;142(2):346–359. doi: 10.1016/0012-1606(90)90355-m. [DOI] [PubMed] [Google Scholar]
  17. Geelen J. L., Boom R., Klaver G. P., Minnaar R. P., Feltkamp M. C., van Milligen F. J., Sol C. J., van der Noordaa J. Transcriptional activation of the major immediate early transcription unit of human cytomegalovirus by heat-shock, arsenite and protein synthesis inhibitors. J Gen Virol. 1987 Nov;68(Pt 11):2925–2931. doi: 10.1099/0022-1317-68-11-2925. [DOI] [PubMed] [Google Scholar]
  18. Ghazal P., DeMattei C., Giulietti E., Kliewer S. A., Umesono K., Evans R. M. Retinoic acid receptors initiate induction of the cytomegalovirus enhancer in embryonal cells. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7630–7634. doi: 10.1073/pnas.89.16.7630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grefte A., van der Giessen M., van Son W., The T. H. Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis. 1993 Feb;167(2):270–277. doi: 10.1093/infdis/167.2.270. [DOI] [PubMed] [Google Scholar]
  20. HAYMAKER W., GIRDANY B. R., STEPHENS J., LILLIE R. D., FETTERMAN G. H. Cerebral involvement with advanced periventricular calcification in generalized cytomegalic inclusion disease in the newborn; a clinicopathological report of a case diagnosed during life. J Neuropathol Exp Neurol. 1954 Oct;13(4):562–586. doi: 10.1093/jnen/13.4.562. [DOI] [PubMed] [Google Scholar]
  21. Hanshaw J. B., Scheiner A. P., Moxley A. W., Gaev L., Abel V., Scheiner B. School failure and deafness after "silent" congenital cytomegalovirus infection. N Engl J Med. 1976 Aug 26;295(9):468–470. doi: 10.1056/NEJM197608262950902. [DOI] [PubMed] [Google Scholar]
  22. Isom H. C., Yin C. Y. Guinea pig cytomegalovirus gene expression. Curr Top Microbiol Immunol. 1990;154:101–121. doi: 10.1007/978-3-642-74980-3_5. [DOI] [PubMed] [Google Scholar]
  23. Keh W. C., Gerber M. A. In situ hybridization for cytomegalovirus DNA in AIDS patients. Am J Pathol. 1988 Jun;131(3):490–496. [PMC free article] [PubMed] [Google Scholar]
  24. Kothari S., Baillie J., Sissons J. G., Sinclair J. H. The 21bp repeat element of the human cytomegalovirus major immediate early enhancer is a negative regulator of gene expression in undifferentiated cells. Nucleic Acids Res. 1991 Apr 25;19(8):1767–1771. doi: 10.1093/nar/19.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kothary R., Barton S. C., Franz T., Norris M. L., Hettle S., Surani M. A. Unusual cell specific expression of a major human cytomegalovirus immediate early gene promoter-lacZ hybrid gene in transgenic mouse embryos. Mech Dev. 1991 Aug;35(1):25–31. doi: 10.1016/0925-4773(91)90038-8. [DOI] [PubMed] [Google Scholar]
  26. Lathey J. L., Wiley C. A., Verity M. A., Nelson J. A. Cultured human brain capillary endothelial cells are permissive for infection by human cytomegalovirus. Virology. 1990 May;176(1):266–273. doi: 10.1016/0042-6822(90)90252-m. [DOI] [PubMed] [Google Scholar]
  27. Liu R., Baillie J., Sissons J. G., Sinclair J. H. The transcription factor YY1 binds to negative regulatory elements in the human cytomegalovirus major immediate early enhancer/promoter and mediates repression in non-permissive cells. Nucleic Acids Res. 1994 Jul 11;22(13):2453–2459. doi: 10.1093/nar/22.13.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McCracken G. H., Jr, Shinefield H. M., Cobb K., Rausen A. R., Dische R., Eichenwald H. F. Congenital cytomegalic inclusion disease. A longitudinal study of 20 patients. Am J Dis Child. 1969 May;117(5):522–539. doi: 10.1001/archpedi.1969.02100030524005. [DOI] [PubMed] [Google Scholar]
  29. Mercer E. H., Hoyle G. W., Kapur R. P., Brinster R. L., Palmiter R. D. The dopamine beta-hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in adult transgenic mice. Neuron. 1991 Nov;7(5):703–716. doi: 10.1016/0896-6273(91)90274-4. [DOI] [PubMed] [Google Scholar]
  30. Mikkelsen T. R., Chapman B., Din N., Ingerslev J., Kristensen P., Poulsen K., Hjorth J. P. Expression of a cytomegalovirus IE-1-factor VIII cDNA hybrid gene in transgenic mice. Transgenic Res. 1992 Jul;1(4):164–169. doi: 10.1007/BF02522534. [DOI] [PubMed] [Google Scholar]
  31. Mocarski E. S., Jr, Abenes G. B., Manning W. C., Sambucetti L. C., Cherrington J. M. Molecular genetic analysis of cytomegalovirus gene regulation in growth, persistence and latency. Curr Top Microbiol Immunol. 1990;154:47–74. doi: 10.1007/978-3-642-74980-3_3. [DOI] [PubMed] [Google Scholar]
  32. Myers E. N., Stool S. Cytomegalic inclusion disease of the inner ear. Laryngoscope. 1968 Nov;78(11):1904–1915. doi: 10.1288/00005537-196811000-00005. [DOI] [PubMed] [Google Scholar]
  33. Myerson D., Hackman R. C., Nelson J. A., Ward D. C., McDougall J. K. Widespread presence of histologically occult cytomegalovirus. Hum Pathol. 1984 May;15(5):430–439. doi: 10.1016/s0046-8177(84)80076-3. [DOI] [PubMed] [Google Scholar]
  34. Nicholson D. H. Cytomegalovirus infection of the retina. Int Ophthalmol Clin. 1975 Winter;15(4):151–162. doi: 10.1097/00004397-197501540-00013. [DOI] [PubMed] [Google Scholar]
  35. Palmer T. D., Rosman G. J., Osborne W. R., Miller A. D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1330–1334. doi: 10.1073/pnas.88.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Palmiter R. D., Brinster R. L. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. doi: 10.1146/annurev.ge.20.120186.002341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pass R. F., Stagno S., Myers G. J., Alford C. A. Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics. 1980 Nov;66(5):758–762. [PubMed] [Google Scholar]
  38. Perlman J. M., Argyle C. Lethal cytomegalovirus infection in preterm infants: clinical, radiological, and neuropathological findings. Ann Neurol. 1992 Jan;31(1):64–68. doi: 10.1002/ana.410310112. [DOI] [PubMed] [Google Scholar]
  39. Porter S. D., Meyer C. J. A distal tyrosinase upstream element stimulates gene expression in neural-crest-derived melanocytes of transgenic mice: position-independent and mosaic expression. Development. 1994 Aug;120(8):2103–2111. doi: 10.1242/dev.120.8.2103. [DOI] [PubMed] [Google Scholar]
  40. Reynolds D. W., Stagno S., Stubbs K. G., Dahle A. J., Livingston M. M., Saxon S. S., Alford C. A. Inapparent congenital cytomegalovirus infection with elevated cord IgM levels. Casual relation with auditory and mental deficiency. N Engl J Med. 1974 Feb 7;290(6):291–296. doi: 10.1056/NEJM197402072900601. [DOI] [PubMed] [Google Scholar]
  41. Rusconi S., Severne Y., Georgiev O., Galli I., Wieland S. A novel expression assay to study transcriptional activators. Gene. 1990 May 14;89(2):211–221. doi: 10.1016/0378-1119(90)90008-f. [DOI] [PubMed] [Google Scholar]
  42. Saigal S., Lunyk O., Larke R. P., Chernesky M. A. The outcome in children with congenital cytomegalovirus infection. A longitudinal follow-up study. Am J Dis Child. 1982 Oct;136(10):896–901. doi: 10.1001/archpedi.1982.03970460026006. [DOI] [PubMed] [Google Scholar]
  43. Sambucetti L. C., Cherrington J. M., Wilkinson G. W., Mocarski E. S. NF-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J. 1989 Dec 20;8(13):4251–4258. doi: 10.1002/j.1460-2075.1989.tb08610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scharfmann R., Axelrod J. H., Verma I. M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4626–4630. doi: 10.1073/pnas.88.11.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schmidt E. V., Christoph G., Zeller R., Leder P. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol. 1990 Aug;10(8):4406–4411. doi: 10.1128/mcb.10.8.4406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schor A. M., Canfield A. E., Sutton A. B., Allen T. D., Sloan P., Schor S. L. The behaviour of pericytes in vitro: relevance to angiogenesis and differentiation. EXS. 1992;61:167–178. doi: 10.1007/978-3-0348-7001-6_26. [DOI] [PubMed] [Google Scholar]
  47. Schrier R. D., Nelson J. A., Oldstone M. B. Detection of human cytomegalovirus in peripheral blood lymphocytes in a natural infection. Science. 1985 Nov 29;230(4729):1048–1051. doi: 10.1126/science.2997930. [DOI] [PubMed] [Google Scholar]
  48. Smiley M. L., Mar E. C., Huang E. S. Cytomegalovirus infection and viral-induced transformation of human endothelial cells. J Med Virol. 1988 Jun;25(2):213–226. doi: 10.1002/jmv.1890250212. [DOI] [PubMed] [Google Scholar]
  49. Stagno S., Pass R. F., Cloud G., Britt W. J., Henderson R. E., Walton P. D., Veren D. A., Page F., Alford C. A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA. 1986 Oct 10;256(14):1904–1908. [PubMed] [Google Scholar]
  50. Stagno S., Reynolds D. W., Amos C. S., Dahle A. J., McCollister F. P., Mohindra I., Ermocilla R., Alford C. A. Auditory and visual defects resulting from symptomatic and subclinical congenital cytomegaloviral and toxoplasma infections. Pediatrics. 1977 May;59(5):669–678. [PubMed] [Google Scholar]
  51. Stamminger T., Fleckenstein B. Immediate-early transcription regulation of human cytomegalovirus. Curr Top Microbiol Immunol. 1990;154:3–19. doi: 10.1007/978-3-642-74980-3_1. [DOI] [PubMed] [Google Scholar]
  52. Starr J. G., Bart R. D., Jr, Gold E. Inapparent congenital cytomegalovirus infection. Clinical and epidemiologic characteristics in early infancy. N Engl J Med. 1970 May 7;282(19):1075–1078. doi: 10.1056/NEJM197005072821905. [DOI] [PubMed] [Google Scholar]
  53. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991 Sep;72(Pt 9):2059–2064. doi: 10.1099/0022-1317-72-9-2059. [DOI] [PubMed] [Google Scholar]
  54. Toorkey C. B., Carrigan D. R. Immunohistochemical detection of an immediate early antigen of human cytomegalovirus in normal tissues. J Infect Dis. 1989 Nov;160(5):741–751. doi: 10.1093/infdis/160.5.741. [DOI] [PubMed] [Google Scholar]
  55. Tumilowicz J. J., Gawlik M. E., Powell B. B., Trentin J. J. Replication of cytomegalovirus in human arterial smooth muscle cells. J Virol. 1985 Dec;56(3):839–845. doi: 10.1128/jvi.56.3.839-845.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. VOGEL F. S. Enhanced susceptibility of proliferating endothelium to salivary gland virus under naturally occurring and experimental conditions. Am J Pathol. 1958 Nov-Dec;34(6):1069–1079. [PMC free article] [PubMed] [Google Scholar]
  57. WORTH W. A., Jr, HOWARD H. L. New features of inclusion disease of infancy. Am J Pathol. 1950 Jan;26(1):17-35, incl 4 pl. [PMC free article] [PubMed] [Google Scholar]
  58. Williamson W. D., Percy A. K., Yow M. D., Gerson P., Catlin F. I., Koppelman M. L., Thurber S. Asymptomatic congenital cytomegalovirus infection. Audiologic, neuroradiologic, and neurodevelopmental abnormalities during the first year. Am J Dis Child. 1990 Dec;144(12):1365–1368. doi: 10.1001/archpedi.1990.02150360091031. [DOI] [PubMed] [Google Scholar]
  59. Wilson C., Bellen H. J., Gehring W. J. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES