Abstract
Recently, two cellular membrane proteins, the membrane cofactor protein CD46 and the membrane-organizing external spike protein, moesin, have been identified to be functionally associated with measles virus (MV) infectivity of cells. We investigated the functional consequences of binding of monoclonal antibodies to both molecules individually and combined on MV attachment, fusion, and plaque formation and the putative direct physical interaction of moesin and CD46. We found that antibodies to moesin or CD46 separately inhibited MV-cell interactions to a high percentage in the plaque test, by approximately 85 and 75%, respectively. The inhibition by combinations of antibodies was additive at low concentrations and complete at high concentrations. This indicates that similar sites of interaction were blocked by steric hindrance. Furthermore, antimoesin antibodies blocked the infection of CD46-negative mouse cell lines with MV. Chemical cross-linking of cell surface proteins indicated the close proximity of CD46 and moesin in the membrane of human cells, and coimmunoprecipitation of moesin with CD46 suggested their physical interaction. Immunohistochemically by electron microscopy, CD46 and moesin were found to be localized at sites of the cellular membrane where MV particles adsorbed. These data support a model of direct interaction of CD46 and moesin in the cellular membrane and suggest that this complex is functionally involved in the uptake of MV into cells.
Full Text
The Full Text of this article is available as a PDF (639.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dunster L. M., Schneider-Schaulies J., Löffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology. 1994 Jan;198(1):265–274. doi: 10.1006/viro.1994.1029. [DOI] [PubMed] [Google Scholar]
- Dörig R. E., Marcil A., Chopra A., Richardson C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305. doi: 10.1016/0092-8674(93)80071-l. [DOI] [PubMed] [Google Scholar]
- Esiri M. M., Oppenheimer D. R., Brownell B., Haire M. Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci. 1982 Jan;53(1):29–43. doi: 10.1016/0022-510x(82)90078-8. [DOI] [PubMed] [Google Scholar]
- Esolen L. M., Ward B. J., Moench T. R., Griffin D. E. Infection of monocytes during measles. J Infect Dis. 1993 Jul;168(1):47–52. doi: 10.1093/infdis/168.1.47. [DOI] [PubMed] [Google Scholar]
- Gieffers C., Krohne G. In vitro reconstitution of recombinant lamin A and a lamin A mutant lacking the carboxy-terminal tail. Eur J Cell Biol. 1991 Aug;55(2):191–199. [PubMed] [Google Scholar]
- Harrowe G., Mitsuhashi M., Payan D. G. Measles virus-substance P receptor interactions. Possible novel mechanism of viral fusion. J Clin Invest. 1990 Apr;85(4):1324–1327. doi: 10.1172/JCI114571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrowe G., Sudduth-Klinger J., Payan D. G. Measles virus-substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell Mol Neurobiol. 1992 Oct;12(5):397–409. doi: 10.1007/BF00711541. [DOI] [PubMed] [Google Scholar]
- Johnstone R. W., Loveland B. E., McKenzie I. F. Identification and quantification of complement regulator CD46 on normal human tissues. Immunology. 1993 Jul;79(3):341–347. [PMC free article] [PubMed] [Google Scholar]
- Johnstone R. W., Russell S. M., Loveland B. E., McKenzie I. F. Polymorphic expression of CD46 protein isoforms due to tissue-specific RNA splicing. Mol Immunol. 1993 Oct;30(14):1231–1241. doi: 10.1016/0161-5890(93)90038-d. [DOI] [PubMed] [Google Scholar]
- Kirk J., Zhou A. L., McQuaid S., Cosby S. L., Allen I. V. Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol. 1991 Aug;17(4):289–297. doi: 10.1111/j.1365-2990.1991.tb00726.x. [DOI] [PubMed] [Google Scholar]
- Krah D. L. Characterization of octyl glucoside-solubilized cell membrane receptors for binding measles virus. Virology. 1989 Sep;172(1):386–390. doi: 10.1016/0042-6822(89)90147-5. [DOI] [PubMed] [Google Scholar]
- Krah D. L. Receptors for binding measles virus on host cells and erythrocytes. Microb Pathog. 1991 Oct;11(4):221–228. doi: 10.1016/0882-4010(91)90026-7. [DOI] [PubMed] [Google Scholar]
- Kraus E., Schneider-Schaulies S., Miyasaka M., Tamatani T., Sedgwick J. Augmentation of major histocompatibility complex class I and ICAM-1 expression on glial cells following measles virus infection: evidence for the role of type-1 interferon. Eur J Immunol. 1992 Jan;22(1):175–182. doi: 10.1002/eji.1830220126. [DOI] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Lankes W. T., Furthmayr H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8297–8301. doi: 10.1073/pnas.88.19.8297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lankes W., Griesmacher A., Grünwald J., Schwartz-Albiez R., Keller R. A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem J. 1988 May 1;251(3):831–842. doi: 10.1042/bj2510831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leopardi R., Vainionpä R., Hurme M., Siljander P., Salmi A. A. Measles virus infection enhances IL-1 beta but reduces tumor necrosis factor-alpha expression in human monocytes. J Immunol. 1992 Oct 1;149(7):2397–2401. [PubMed] [Google Scholar]
- Liszewski M. K., Post T. W., Atkinson J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–455. doi: 10.1146/annurev.iy.09.040191.002243. [DOI] [PubMed] [Google Scholar]
- Loveland B. E., Johnstone R. W., Russell S. M., Thorley B. R., McKenzie I. F. Different membrane cofactor protein (CD46) isoforms protect transfected cells against antibody and complement mediated lysis. Transpl Immunol. 1993;1(2):101–108. doi: 10.1016/0966-3274(93)90002-p. [DOI] [PubMed] [Google Scholar]
- Maisner A., Schneider-Schaulies J., Liszewski M. K., Atkinson J. P., Herrler G. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J Virol. 1994 Oct;68(10):6299–6304. doi: 10.1128/jvi.68.10.6299-6304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manchester M., Liszewski M. K., Atkinson J. P., Oldstone M. B. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2161–2165. doi: 10.1073/pnas.91.6.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McChesney M. B., Oldstone M. B. Viruses perturb lymphocyte functions: selected principles characterizing virus-induced immunosuppression. Annu Rev Immunol. 1987;5:279–304. doi: 10.1146/annurev.iy.05.040187.001431. [DOI] [PubMed] [Google Scholar]
- Moench T. R., Griffin D. E., Obriecht C. R., Vaisberg A. J., Johnson R. T. Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis. 1988 Aug;158(2):433–442. doi: 10.1093/infdis/158.2.433. [DOI] [PubMed] [Google Scholar]
- Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naniche D., Wild T. F., Rabourdin-Combe C., Gerlier D. Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol. 1993 Jun;74(Pt 6):1073–1079. doi: 10.1099/0022-1317-74-6-1073. [DOI] [PubMed] [Google Scholar]
- Russell S. M., Sparrow R. L., McKenzie I. F., Purcell D. F. Tissue-specific and allelic expression of the complement regulator CD46 is controlled by alternative splicing. Eur J Immunol. 1992 Jun;22(6):1513–1518. doi: 10.1002/eji.1830220625. [DOI] [PubMed] [Google Scholar]
- Sato N., Funayama N., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci. 1992 Sep;103(Pt 1):131–143. doi: 10.1242/jcs.103.1.131. [DOI] [PubMed] [Google Scholar]
- Schneider-Schaulies J., Schneider-Schaulies S., Ter Meulen V. Differential induction of cytokines by primary and persistent measles virus infections in human glial cells. Virology. 1993 Jul;195(1):219–228. doi: 10.1006/viro.1993.1363. [DOI] [PubMed] [Google Scholar]
- Schneider-Schaulies S., Liebert U. G., Segev Y., Rager-Zisman B., Wolfson M., ter Meulen V. Antibody-dependent transcriptional regulation of measles virus in persistently infected neural cells. J Virol. 1992 Sep;66(9):5534–5541. doi: 10.1128/jvi.66.9.5534-5541.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnorr J. J., Schneider-Schaulies S., Simon-Jödicke A., Pavlovic J., Horisberger M. A., ter Meulen V. MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol. 1993 Aug;67(8):4760–4768. doi: 10.1128/jvi.67.8.4760-4768.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepley M. P., Racaniello V. R. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J Virol. 1994 Mar;68(3):1301–1308. doi: 10.1128/jvi.68.3.1301-1308.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakefield A. J., Pittilo R. M., Sim R., Cosby S. L., Stephenson J. R., Dhillon A. P., Pounder R. E. Evidence of persistent measles virus infection in Crohn's disease. J Med Virol. 1993 Apr;39(4):345–353. doi: 10.1002/jmv.1890390415. [DOI] [PubMed] [Google Scholar]
- Ward B. J., Griffin D. E. Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol. 1993 May;67(2):171–177. doi: 10.1006/clin.1993.1061. [DOI] [PubMed] [Google Scholar]
- Wild T. F., Bernard A., Spehner D., Drillien R. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. J Gen Virol. 1992 Feb;73(Pt 2):359–367. doi: 10.1099/0022-1317-73-2-359. [DOI] [PubMed] [Google Scholar]
- Wild T. F., Malvoisin E., Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol. 1991 Feb;72(Pt 2):439–442. doi: 10.1099/0022-1317-72-2-439. [DOI] [PubMed] [Google Scholar]
- Yoshikawa Y., Yamanouchi K., Takasu T., Rauf S., Ahmed A. Structural homology between hemagglutinin (HA) of measles virus and the active site of long neurotoxins. Virus Genes. 1991 Jan;5(1):57–67. doi: 10.1007/BF00571731. [DOI] [PubMed] [Google Scholar]