Abstract
Enhancement of human immunodeficiency virus (HIV) infection by complement alone or in conjunction with antibodies was studied experimentally and theoretically. Experimental studies showed that while HIV-positive sera neutralize HIV infection, the addition of fresh complement abrogated neutralization and could even cause enhancement. Enhancement was blocked by anti-complement receptor 2 antibodies, and infection under enhancing conditions could be blocked by soluble CD4. Antibody-dependent complement-mediated enhancement (C'ADE) was dependent on the alternative complement activation pathway, as factor B-deficient serum could enhance only after the addition of factor B. The observed enhancement was also antibody dependent, since the addition of antibodies increased the level of enhancement. Under C'ADE conditions, infection reached a plateau within 5 min and was not caused by activation of cells by factors in the human serum. On the contrary, preincubation of cells with complement decreased the level of enhancement. A theoretical model of HIV infection in vitro which exhibited similar enhancement in an antibody- and complement concentration-dependent way was developed. Model studies indicated that the enhanced infection process could be explained by the fact that virions, because of complement deposition on the surface, bind more efficiently to cells. The model also indicated that the saturation of the enhanced infection process seen after a few minutes could be caused by saturation of the complement receptors. The effect of neutralizing antibodies can thus be overcome by the enhancing effect of complement that facilitates the contact between gp120 and CD4. These studies demonstrate that the main features of the complement-dependent enhancement phenomenon can be understood in terms of a simple mathematical model.
Full Text
The Full Text of this article is available as a PDF (302.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker L. J., Nottet H. S., de Vos N. M., de Graaf L., Van Strijp J. A., Visser M. R., Verhoef J. Antibodies and complement enhance binding and uptake of HIV-1 by human monocytes. AIDS. 1992 Jan;6(1):35–41. doi: 10.1097/00002030-199201000-00004. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer V., Desgranges C., Trabaud M. A., Fischer E., Kazatchkine M. D. Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD4- and antibody-independent fashion. J Exp Med. 1991 May 1;173(5):1151–1158. doi: 10.1084/jem.173.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dierich M. P., Ebenbichler C. F., Marschang P., Füst G., Thielens N. M., Arlaud G. J. HIV and human complement: mechanisms of interaction and biological implication. Immunol Today. 1993 Sep;14(9):435–440. doi: 10.1016/0167-5699(93)90246-H. [DOI] [PubMed] [Google Scholar]
- Dolin R., Graham B. S., Greenberg S. B., Tacket C. O., Belshe R. B., Midthun K., Clements M. L., Gorse G. J., Horgan B. W., Atmar R. L. The safety and immunogenicity of a human immunodeficiency virus type 1 (HIV-1) recombinant gp160 candidate vaccine in humans. NIAID AIDS Vaccine Clinical Trials Network. Ann Intern Med. 1991 Jan 15;114(2):119–127. doi: 10.7326/0003-4819-114-2-119. [DOI] [PubMed] [Google Scholar]
- Gras G. S., Dormont D. Antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus type 1 infection in a human, Epstein-Barr virus-transformed B-lymphocytic cell line. J Virol. 1991 Jan;65(1):541–545. doi: 10.1128/jvi.65.1.541-545.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E., Nielsen C., Arendrup M., Olofsson S., Mathiesen L., Nielsen J. O., Clausen H. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus. J Virol. 1991 Dec;65(12):6461–6467. doi: 10.1128/jvi.65.12.6461-6467.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E., Nielsen C., Clausen H., Mathiesen L. R., Nielsen J. O. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937). Antiviral Res. 1991 Oct;16(3):233–242. doi: 10.1016/0166-3542(91)90003-a. [DOI] [PubMed] [Google Scholar]
- Jiang S. B., Lin K., Neurath A. R. Enhancement of human immunodeficiency virus type 1 infection by antisera to peptides from the envelope glycoproteins gp120/gp41. J Exp Med. 1991 Dec 1;174(6):1557–1563. doi: 10.1084/jem.174.6.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- June R. A., Landay A. L., Stefanik K., Lint T. F., Spear G. T. Phenotypic analysis of complement receptor 2+ T lymphocytes: reduced expression on CD4+ cells in HIV-infected persons. Immunology. 1992 Jan;75(1):59–65. [PMC free article] [PubMed] [Google Scholar]
- June R. A., Schade S. Z., Bankowski M. J., Kuhns M., McNamara A., Lint T. F., Landay A. L., Spear G. T. Complement and antibody mediate enhancement of HIV infection by increasing virus binding and provirus formation. AIDS. 1991 Mar;5(3):269–274. doi: 10.1097/00002030-199103000-00004. [DOI] [PubMed] [Google Scholar]
- Layne S. P., Merges M. J., Dembo M., Spouge J. L., Conley S. R., Moore J. P., Raina J. L., Renz H., Gelderblom H. R., Nara P. L. Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology. 1992 Aug;189(2):695–714. doi: 10.1016/0042-6822(92)90593-e. [DOI] [PubMed] [Google Scholar]
- Layne S. P., Spouge J. L., Dembo M. Quantifying the infectivity of human immunodeficiency virus. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4644–4648. doi: 10.1073/pnas.86.12.4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montefiori D. C., Graham B. S., Kliks S., Wright P. F. Serum antibodies to HIV-1 in recombinant vaccinia virus recipients boosted with purified recombinant gp160. NIAID AIDS Vaccine Clinical Trials Network. J Clin Immunol. 1992 Nov;12(6):429–439. doi: 10.1007/BF00918855. [DOI] [PubMed] [Google Scholar]
- Montefiori D. C., Stewart K., Ahearn J. M., Zhou J., Zhou J. Complement-mediated binding of naturally glycosylated and glycosylation-modified human immunodeficiency virus type 1 to human CR2 (CD21). J Virol. 1993 May;67(5):2699–2706. doi: 10.1128/jvi.67.5.2699-2706.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montefiori D. C., Zhou J., Shaff D. I. CD4-independent binding of HIV-1 to the B lymphocyte receptor CR2 (CD21) in the presence of complement and antibody. Clin Exp Immunol. 1992 Dec;90(3):383–389. doi: 10.1111/j.1365-2249.1992.tb05855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen C. M., Bygbjerg I. C., Vestergaard B. F. Detection of HIV antigens in eluates from whole blood collected on filterpaper. Lancet. 1987 Mar 7;1(8532):566–567. doi: 10.1016/s0140-6736(87)90213-3. [DOI] [PubMed] [Google Scholar]
- Perricone R., Fontana L., de Carolis C., Carini C., Sirianni M. C., Aiuti F. Evidence for activation of complement in patients with AIDS related complex (ARC) and/or lymphoadenopathy syndrome (LAS). Clin Exp Immunol. 1987 Dec;70(3):500–507. [PMC free article] [PubMed] [Google Scholar]
- Popovic M., Sarngadharan M. G., Read E., Gallo R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984 May 4;224(4648):497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
- Posner M. R., Elboim H. S., Cannon T., Cavacini L., Hideshima T. Functional activity of an HIV-1 neutralizing IgG human monoclonal antibody: ADCC and complement-mediated lysis. AIDS Res Hum Retroviruses. 1992 May;8(5):553–558. doi: 10.1089/aid.1992.8.553. [DOI] [PubMed] [Google Scholar]
- Reisinger E. C., Vogetseder W., Berzow D., Köfler D., Bitterlich G., Lehr H. A., Wachter H., Dierich M. P. Complement-mediated enhancement of HIV-1 infection of the monoblastoid cell line U937. AIDS. 1990 Oct;4(10):961–965. doi: 10.1097/00002030-199010000-00003. [DOI] [PubMed] [Google Scholar]
- Robinson W. E., Jr, Gorny M. K., Xu J. Y., Mitchell W. M., Zolla-Pazner S. Two immunodominant domains of gp41 bind antibodies which enhance human immunodeficiency virus type 1 infection in vitro. J Virol. 1991 Aug;65(8):4169–4176. doi: 10.1128/jvi.65.8.4169-4176.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson W. E., Jr, Montefiori D. C., Mitchell W. M. Complement-mediated antibody-dependent enhancement of HIV-1 infection requires CD4 and complement receptors. Virology. 1990 Apr;175(2):600–604. doi: 10.1016/0042-6822(90)90449-2. [DOI] [PubMed] [Google Scholar]
- Shoup D., Szabo A. Role of diffusion in ligand binding to macromolecules and cell-bound receptors. Biophys J. 1982 Oct;40(1):33–39. doi: 10.1016/S0006-3495(82)84455-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spear G. T. Interaction of non-antibody factors with HIV in plasma. AIDS. 1993 Sep;7(9):1149–1157. doi: 10.1097/00002030-199309000-00001. [DOI] [PubMed] [Google Scholar]
- Spear G. T., Sullivan B. L., Landay A. L., Lint T. F. Neutralization of human immunodeficiency virus type 1 by complement occurs by viral lysis. J Virol. 1990 Dec;64(12):5869–5873. doi: 10.1128/jvi.64.12.5869-5873.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thieblemont N., Delibrias C., Fischer E., Weiss L., Kazatchkine M. D., Haeffner-Cavaillon N. Complement enhancement of HIV infection is mediated by complement receptors. Immunopharmacology. 1993 Mar-Apr;25(2):87–93. doi: 10.1016/0162-3109(93)90012-f. [DOI] [PubMed] [Google Scholar]
- Yefenof E., Asjö B., Klein E. Alternative complement pathway activation by HIV infected cells: C3 fixation does not lead to complement lysis but enhances NK sensitivity. Int Immunol. 1991 Apr;3(4):395–401. doi: 10.1093/intimm/3.4.395. [DOI] [PubMed] [Google Scholar]