Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Apr;69(4):2401–2405. doi: 10.1128/jvi.69.4.2401-2405.1995

Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus.

L Pedersen 1, S V Johann 1, M van Zeijl 1, F S Pedersen 1, B O'Hara 1
PMCID: PMC188913  PMID: 7884886

Abstract

Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences and are predicted to have 10 transmembrane domains and five extracellular loops. A stretch of nine amino acids (region A) in the predicted fourth extracellular loop was previously shown to be critical for the function of Glvr1 as receptor for GALV and FeLV-B. Glvr1 and -2 show clusters of amino acid differences in several of their predicted extracellular loops, with the highest degree of divergence in region A. Chimeras were made between the two genes to further investigate the role of Glvr1 region A in defining receptor specificity for GALV and FeLV-B and to map which regions of Glvr2 control receptor specificity for A-MLVs. Region A from Glvr1 was sufficient to confer receptor specificity for GALV upon Glvr2, with the same chimera failing to act as a receptor for FeLV-B. However, introduction of additional N- or C-terminal Glvr1-encoding sequences in addition to Glvr1 region A-encoding sequences resulted in functional FeLV-B receptors. Therefore, FeLV-B is dependent on Glvr1 sequences outside region A for infectivity. The receptor specificity of Glvr2 for A-MLV could not be mapped to a single critical region; rather, N-terminal as well as C-terminal Glvr2-encoding sequences could confer specificity for A-MLV infection upon Glvr1. Surprisingly, though GALV/FeLV-B and A-MLV belong to different interference groups, some chimeras functioned as receptors for all three viruses.

Full Text

The Full Text of this article is available as a PDF (182.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M. A., Ramesh N., Miller A. D., Osborne W. R. Internal initiation of translation in retroviral vectors carrying picornavirus 5' nontranslated regions. J Virol. 1991 Sep;65(9):4985–4990. doi: 10.1128/jvi.65.9.4985-4990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eglitis M. A., Eiden M. V., Wilson C. A. Gibbon ape leukemia virus and the amphotropic murine leukemia virus 4070A exhibit an unusual interference pattern on E36 Chinese hamster cells. J Virol. 1993 Sep;67(9):5472–5477. doi: 10.1128/jvi.67.9.5472-5477.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johann S. V., Gibbons J. J., O'Hara B. GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. 1992 Mar;66(3):1635–1640. doi: 10.1128/jvi.66.3.1635-1640.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Johann S. V., van Zeijl M., Cekleniak J., O'Hara B. Definition of a domain of GLVR1 which is necessary for infection by gibbon ape leukemia virus and which is highly polymorphic between species. J Virol. 1993 Nov;67(11):6733–6736. doi: 10.1128/jvi.67.11.6733-6736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kavanaugh M. P., Miller D. G., Zhang W., Law W., Kozak S. L., Kabat D., Miller A. D. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7071–7075. doi: 10.1073/pnas.91.15.7071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  7. McLachlin J. R., Mittereder N., Daucher M. B., Kadan M., Eglitis M. A. Factors affecting retroviral vector function and structural integrity. Virology. 1993 Jul;195(1):1–5. doi: 10.1006/viro.1993.1340. [DOI] [PubMed] [Google Scholar]
  8. Miller A. D., Garcia J. V., von Suhr N., Lynch C. M., Wilson C., Eiden M. V. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. 1991 May;65(5):2220–2224. doi: 10.1128/jvi.65.5.2220-2224.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  10. Miller D. G., Edwards R. H., Miller A. D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):78–82. doi: 10.1073/pnas.91.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'Hara B., Johann S. V., Klinger H. P., Blair D. G., Rubinson H., Dunn K. J., Sass P., Vitek S. M., Robins T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ. 1990 Mar;1(3):119–127. [PubMed] [Google Scholar]
  12. Price J., Turner D., Cepko C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):156–160. doi: 10.1073/pnas.84.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sommerfelt M. A., Weiss R. A. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990 May;176(1):58–69. doi: 10.1016/0042-6822(90)90230-o. [DOI] [PubMed] [Google Scholar]
  14. Tailor C. S., Takeuchi Y., O'Hara B., Johann S. V., Weiss R. A., Collins M. K. Mutation of amino acids within the gibbon ape leukemia virus (GALV) receptor differentially affects feline leukemia virus subgroup B, simian sarcoma-associated virus, and GALV infections. J Virol. 1993 Nov;67(11):6737–6741. doi: 10.1128/jvi.67.11.6737-6741.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takeuchi Y., Vile R. G., Simpson G., O'Hara B., Collins M. K., Weiss R. A. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J Virol. 1992 Feb;66(2):1219–1222. doi: 10.1128/jvi.66.2.1219-1222.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  17. Wilson C. A., Farrell K. B., Eiden M. V. Comparison of cDNAs encoding the gibbon ape leukaemia virus receptor from susceptible and non-susceptible murine cells. J Gen Virol. 1994 Aug;75(Pt 8):1901–1908. doi: 10.1099/0022-1317-75-8-1901. [DOI] [PubMed] [Google Scholar]
  18. van Zeijl M., Johann S. V., Closs E., Cunningham J., Eddy R., Shows T. B., O'Hara B. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1168–1172. doi: 10.1073/pnas.91.3.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES