Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Apr;69(4):2700–2703. doi: 10.1128/jvi.69.4.2700-2703.1995

Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity.

N V Kaverin 1, R G Webster 1
PMCID: PMC188959  PMID: 7884927

Abstract

We demonstrated that influenza virus replication in Vero (WHO) cells, a subline of African green monkey kidney cells, is impaired by rapid inactivation of trypsin in the culture fluids. Trypsin inactivation was caused by a factor secreted by Vero cells into the media. Repeated addition of trypsin to the culture medium of influenza virus-infected Vero cells restores the multicycle growth pattern of influenza A virus strains, allowing high yields to be obtained at a low multiplicity of infection. These findings may permit efficient use of Vero (WHO) cells in the production of influenza vaccines.

Full Text

The Full Text of this article is available as a PDF (167.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almond J. W. A single gene determines the host range of influenza virus. Nature. 1977 Dec 15;270(5638):617–618. doi: 10.1038/270617a0. [DOI] [PubMed] [Google Scholar]
  2. Conti G., Valcavi P., Natali A., Schito G. C. Different patterns of replication in influenza virus-infected KB cells. Arch Virol. 1980;66(4):309–320. doi: 10.1007/BF01320627. [DOI] [PubMed] [Google Scholar]
  3. Israël A. Genotypic and phenotypic characterization of a mammalian cell-adapted mutant of fowl plague virus (FPV). J Gen Virol. 1980 Nov;51(Pt 1):33–44. doi: 10.1099/0022-1317-51-1-33. [DOI] [PubMed] [Google Scholar]
  4. Katz J. M., Naeve C. W., Webster R. G. Host cell-mediated variation in H3N2 influenza viruses. Virology. 1987 Feb;156(2):386–395. doi: 10.1016/0042-6822(87)90418-1. [DOI] [PubMed] [Google Scholar]
  5. Kawaoka Y., Webster R. G. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci U S A. 1988 Jan;85(2):324–328. doi: 10.1073/pnas.85.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klenk H. D., Rott R., Orlich M., Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975 Dec;68(2):426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  7. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  8. Lazarowitz S. G., Choppin P. W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975 Dec;68(2):440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  9. Robertson J. S., Bootman J. S., Newman R., Oxford J. S., Daniels R. S., Webster R. G., Schild G. C. Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virology. 1987 Sep;160(1):31–37. doi: 10.1016/0042-6822(87)90040-7. [DOI] [PubMed] [Google Scholar]
  10. Schild G. C., Oxford J. S., de Jong J. C., Webster R. G. Evidence for host-cell selection of influenza virus antigenic variants. Nature. 1983 Jun 23;303(5919):706–709. doi: 10.1038/303706a0. [DOI] [PubMed] [Google Scholar]
  11. Webster R. G., Rott R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell. 1987 Aug 28;50(5):665–666. doi: 10.1016/0092-8674(87)90321-7. [DOI] [PubMed] [Google Scholar]
  12. Zimmerman M., Ashe B., Yurewicz E. C., Patel G. Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem. 1977 Mar;78(1):47–51. doi: 10.1016/0003-2697(77)90006-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES