Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Apr;69(4):2716–2721. doi: 10.1128/jvi.69.4.2716-2721.1995

Papilloma formation in human foreskin xenografts after inoculation of human papillomavirus type 16 DNA.

J L Brandsma 1, D G Brownstein 1, W Xiao 1, B J Longley 1
PMCID: PMC188962  PMID: 7884930

Abstract

A mouse model of high-risk human papillomavirus infection was developed in which human papillomavirus (HPV) type 16 DNA was inoculated into human foreskin grafted to the skin of severe combined immunodeficient (scid) mice. Grafted skin contained human epidermis and dermis and, like normal human skin, expressed involucrin in differentiating keratinocytes. HPV type 16 DNA, attached to gold particles, was delivered directly into human epidermal cells and induced exophytic papilloma with histologic features of papillomavirus infection, including koilocytosis and expression of papillomavirus capsid antigen. This model should be useful for determining in vivo the functions of viral genes and for developing strategies to prevent and treat HPV-associated disease. It may also be of value in developing animal models of other human skin diseases.

Full Text

The Full Text of this article is available as a PDF (606.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andree C., Swain W. F., Page C. P., Macklin M. D., Slama J., Hatzis D., Eriksson E. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12188–12192. doi: 10.1073/pnas.91.25.12188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonnez W., Rose R. C., Da Rin C., Borkhuis C., de Mesy Jensen K. L., Reichman R. C. Propagation of human papillomavirus type 11 in human xenografts using the severe combined immunodeficiency (SCID) mouse and comparison to the nude mouse model. Virology. 1993 Nov;197(1):455–458. doi: 10.1006/viro.1993.1611. [DOI] [PubMed] [Google Scholar]
  3. Brandsma J. L. Animal models of human-papillomavirus-associated oncogenesis. Intervirology. 1994;37(3-4):189–200. doi: 10.1159/000150377. [DOI] [PubMed] [Google Scholar]
  4. Brandsma J. L., Lewis A. J., Abramson A., Manos M. M. Detection and typing of papillomavirus DNA in formaldehyde-fixed paraffin-embedded tissue. Arch Otolaryngol Head Neck Surg. 1990 Jul;116(7):844–848. doi: 10.1001/archotol.1990.01870070092017. [DOI] [PubMed] [Google Scholar]
  5. Brandsma J. L., Xiao W. Infectious virus replication in papillomas induced by molecularly cloned cottontail rabbit papillomavirus DNA. J Virol. 1993 Jan;67(1):567–571. doi: 10.1128/jvi.67.1.567-571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandsma J. L., Yang Z. H., Barthold S. W., Johnson E. A. Use of a rapid, efficient inoculation method to induce papillomas by cottontail rabbit papillomavirus DNA shows that the E7 gene is required. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4816–4820. doi: 10.1073/pnas.88.11.4816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brandsma J. L., Yang Z. H., DiMaio D., Barthold S. W., Johnson E., Xiao W. The putative E5 open reading frame of cottontail rabbit papillomavirus is dispensable for papilloma formation in domestic rabbits. J Virol. 1992 Oct;66(10):6204–6207. doi: 10.1128/jvi.66.10.6204-6207.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng L., Ziegelhoffer P. R., Yang N. S. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4455–4459. doi: 10.1073/pnas.90.10.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Defeo-Jones D., Vuocolo G. A., Haskell K. M., Hanobik M. G., Kiefer D. M., McAvoy E. M., Ivey-Hoyle M., Brandsma J. L., Oliff A., Jones R. E. Papillomavirus E7 protein binding to the retinoblastoma protein is not required for viral induction of warts. J Virol. 1993 Feb;67(2):716–725. doi: 10.1128/jvi.67.2.716-725.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DiPaolo J. A., Popescu N. C., Alvarez L., Woodworth C. D. Cellular and molecular alterations in human epithelial cells transformed by recombinant human papillomavirus DNA. Crit Rev Oncog. 1993;4(4):337–360. [PubMed] [Google Scholar]
  11. Eisenbraun M. D., Fuller D. H., Haynes J. R. Examination of parameters affecting the elicitation of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol. 1993 Nov;12(9):791–797. doi: 10.1089/dna.1993.12.791. [DOI] [PubMed] [Google Scholar]
  12. Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11478–11482. doi: 10.1073/pnas.90.24.11478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Georges E., Pehau-Arnaudet G., Orth G. Molecular and biological characterization of cottontail rabbit papillomavirus variant DNA sequences integrated in the VX7 carcinoma. Virology. 1992 Feb;186(2):750–759. doi: 10.1016/0042-6822(92)90042-n. [DOI] [PubMed] [Google Scholar]
  14. Haynes J. R., Fuller D. H., Eisenbraun M. D., Ford M. J., Pertmer T. M. Accell particle-mediated DNA immunization elicits humoral, cytotoxic, and protective immune responses. AIDS Res Hum Retroviruses. 1994;10 (Suppl 2):S43–S45. [PubMed] [Google Scholar]
  15. Howett M. K., Kreider J. W., Cockley K. D. Human xenografts. A model system for human papillomavirus infection. Intervirology. 1990;31(2-4):109–115. doi: 10.1159/000150144. [DOI] [PubMed] [Google Scholar]
  16. Jiao S., Cheng L., Wolff J. A., Yang N. S. Particle bombardment-mediated gene transfer and expression in rat brain tissues. Biotechnology (N Y) 1993 Apr;11(4):497–502. doi: 10.1038/nbt0493-497. [DOI] [PubMed] [Google Scholar]
  17. Johnston S. A. Biolistic transformation: microbes to mice. Nature. 1990 Aug 23;346(6286):776–777. doi: 10.1038/346776a0. [DOI] [PubMed] [Google Scholar]
  18. Kaneshima H., Namikawa R., McCune J. M. Human hematolymphoid cells in SCID mice. Curr Opin Immunol. 1994 Apr;6(2):327–333. doi: 10.1016/0952-7915(94)90109-0. [DOI] [PubMed] [Google Scholar]
  19. Kreider J. W., Bartlett G. L., Sharkey F. E. Primary neoplastic transformation in vivo of xenogeneic skin grafts on nude mice. Cancer Res. 1979 Jan;39(1):273–276. [PubMed] [Google Scholar]
  20. Kreider J. W., Howett M. K., Leure-Dupree A. E., Zaino R. J., Weber J. A. Laboratory production in vivo of infectious human papillomavirus type 11. J Virol. 1987 Feb;61(2):590–593. doi: 10.1128/jvi.61.2.590-593.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kreider J. W., Howett M. K., Lill N. L., Bartlett G. L., Zaino R. J., Sedlacek T. V., Mortel R. In vivo transformation of human skin with human papillomavirus type 11 from condylomata acuminata. J Virol. 1986 Aug;59(2):369–376. doi: 10.1128/jvi.59.2.369-376.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreider J. W., Howett M. K., Stoler M. H., Zaino R. J., Welsh P. Susceptibility of various human tissues to transformation in vivo with human papillomavirus type 11. Int J Cancer. 1987 Apr 15;39(4):459–465. doi: 10.1002/ijc.2910390409. [DOI] [PubMed] [Google Scholar]
  23. Kreider J. W., Howett M. K., Wolfe S. A., Bartlett G. L., Zaino R. J., Sedlacek T., Mortel R. Morphological transformation in vivo of human uterine cervix with papillomavirus from condylomata acuminata. Nature. 1985 Oct 17;317(6038):639–641. doi: 10.1038/317639a0. [DOI] [PubMed] [Google Scholar]
  24. Kreider J. W., Patrick S. D., Cladel N. M., Welsh P. A. Experimental infection with human papillomavirus type 1 of human hand and foot skin. Virology. 1990 Jul;177(1):415–417. doi: 10.1016/0042-6822(90)90503-j. [DOI] [PubMed] [Google Scholar]
  25. Lambert P. F. Papillomavirus DNA replication. J Virol. 1991 Jul;65(7):3417–3420. doi: 10.1128/jvi.65.7.3417-3420.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lichter P., Ledbetter S. A., Ledbetter D. H., Ward D. C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6634–6638. doi: 10.1073/pnas.87.17.6634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matera A. G., Ward D. C. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization. Hum Mol Genet. 1992 Oct;1(7):535–539. doi: 10.1093/hmg/1.7.535. [DOI] [PubMed] [Google Scholar]
  28. McCune J. M., Péault B., Streeter P. R., Rabin L. Preclinical evaluation of human hematolymphoid function in the SCID-hu mouse. Immunol Rev. 1991 Dec;124:45–62. doi: 10.1111/j.1600-065x.1991.tb00615.x. [DOI] [PubMed] [Google Scholar]
  29. Meyers C., Harry J., Lin Y. L., Wettstein F. O. Identification of three transforming proteins encoded by cottontail rabbit papillomavirus. J Virol. 1992 Mar;66(3):1655–1664. doi: 10.1128/jvi.66.3.1655-1664.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mosier D. E. Adoptive transfer of human lymphoid cells to severely immunodeficient mice: models for normal human immune function, autoimmunity, lymphomagenesis, and AIDS. Adv Immunol. 1991;50:303–325. doi: 10.1016/s0065-2776(08)60828-7. [DOI] [PubMed] [Google Scholar]
  31. Mueller B. M., Reisfeld R. A. Potential of the scid mouse as a host for human tumors. Cancer Metastasis Rev. 1991 Oct;10(3):193–200. doi: 10.1007/BF00050791. [DOI] [PubMed] [Google Scholar]
  32. Murphy G. F., Flynn T. C., Rice R. H., Pinkus G. S. Involucrin expression in normal and neoplastic human skin: a marker for keratinocyte differentiation. J Invest Dermatol. 1984 May;82(5):453–457. doi: 10.1111/1523-1747.ep12260945. [DOI] [PubMed] [Google Scholar]
  33. Münger K., Phelps W. C. The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim Biophys Acta. 1993 May 25;1155(1):111–123. doi: 10.1016/0304-419x(93)90025-8. [DOI] [PubMed] [Google Scholar]
  34. Münger K., Scheffner M., Huibregtse J. M., Howley P. M. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv. 1992;12:197–217. [PubMed] [Google Scholar]
  35. Nasseri M., Meyers C., Wettstein F. O. Genetic analysis of CRPV pathogenesis: the L1 open reading frame is dispensable for cellular transformation but is required for papilloma formation. Virology. 1989 May;170(1):321–325. doi: 10.1016/0042-6822(89)90388-7. [DOI] [PubMed] [Google Scholar]
  36. Sousa R., Dostatni N., Yaniv M. Control of papillomavirus gene expression. Biochim Biophys Acta. 1990 Jun 1;1032(1):19–37. doi: 10.1016/0304-419x(90)90010-x. [DOI] [PubMed] [Google Scholar]
  37. Stanley M. A., Browne H. M., Appleby M., Minson A. C. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer. 1989 Apr 15;43(4):672–676. doi: 10.1002/ijc.2910430422. [DOI] [PubMed] [Google Scholar]
  38. Sterling J., Stanley M., Gatward G., Minson T. Production of human papillomavirus type 16 virions in a keratinocyte cell line. J Virol. 1990 Dec;64(12):6305–6307. doi: 10.1128/jvi.64.12.6305-6307.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stoler M. H., Rhodes C. R., Whitbeck A., Wolinsky S. M., Chow L. T., Broker T. R. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol. 1992 Feb;23(2):117–128. doi: 10.1016/0046-8177(92)90232-r. [DOI] [PubMed] [Google Scholar]
  40. Stoler M. H., Whitbeck A., Wolinsky S. M., Broker T. R., Chow L. T., Howett M. K., Kreider J. W. Infectious cycle of human papillomavirus type 11 in human foreskin xenografts in nude mice. J Virol. 1990 Jul;64(7):3310–3318. doi: 10.1128/jvi.64.7.3310-3318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stratton P., Ciacco K. H. Cervical neoplasia in the patient with HIV infection. Curr Opin Obstet Gynecol. 1994 Feb;6(1):86–91. [PubMed] [Google Scholar]
  42. Tang D. C., DeVit M., Johnston S. A. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992 Mar 12;356(6365):152–154. doi: 10.1038/356152a0. [DOI] [PubMed] [Google Scholar]
  43. Williams R. S., Johnston S. A., Riedy M., DeVit M. J., McElligott S. G., Sanford J. C. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2726–2730. doi: 10.1073/pnas.88.7.2726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu X., Xiao W., Brandsma J. L. Papilloma formation by cottontail rabbit papillomavirus requires E1 and E2 regulatory genes in addition to E6 and E7 transforming genes. J Virol. 1994 Sep;68(9):6097–6102. doi: 10.1128/jvi.68.9.6097-6102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yang N. S., Burkholder J., Roberts B., Martinell B., McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9568–9572. doi: 10.1073/pnas.87.24.9568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang N. S. Gene transfer into mammalian somatic cells in vivo. Crit Rev Biotechnol. 1992;12(4):335–356. doi: 10.3109/07388559209040627. [DOI] [PubMed] [Google Scholar]
  47. Zelenin A. V., Alimov A. A., Zelenina I. A., Semenova M. L., Rodova M. A., Chernov B. K., Kolesnikov V. A. Transfer of foreign DNA into the cells of developing mouse embryos by microprojectile bombardment. FEBS Lett. 1993 Jan 2;315(1):29–32. doi: 10.1016/0014-5793(93)81126-k. [DOI] [PubMed] [Google Scholar]
  48. de Villiers E. M. Viruses in cancers of the head and neck. Adv Otorhinolaryngol. 1991;46:116–123. doi: 10.1159/000419970. [DOI] [PubMed] [Google Scholar]
  49. zur Hausen H. Human papillomaviruses in the pathogenesis of anogenital cancer. Virology. 1991 Sep;184(1):9–13. doi: 10.1016/0042-6822(91)90816-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES